
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science and Engineering

Master’s Thesis

Web content management system: architecture, concepts and
application

Bc. Josef Kunhart

Supervisor: Ing. Miroslav Bureš, Ph.D.

Study Programme: Electrical Engineering and Information Technology

Field of Study: Computer Science and Engineering

April 28, 2013

iv

v

Aknowledgements
I would like to thank my master’s thesis supervisor, Ing. Miroslav Bureš, Ph.D., my relatives
and friends for continual support and patience during writing this work.

vi

vii

Declaration
I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.
I have no objection to usage of this work in compliance with the act §60 Zákon č. 121/2000
Sb. (copyright law), and with the rights connected with the copyright act including the
changes in the act.

In Prague on April 27, 2013 .

viii

Abstrakt

Cílem diplomové práce je návrh webového systému pro správu obsahu. Důraz je kladen na
architekturu, návrh databáze, dílčí koncepty a uživatelské rozhraní systému. V textu jsou
popsány typicky řešené dílčí koncepty a problémy webového systému pro správu obsahu.
U klíčových konceptů jsou diskutovány různé varianty řešení. Tyto varianty jsou porovná-
vány s podobnými řešeními a produkty. V první části práce je popsána architektura systému,
v dalších částech důležité koncepty a poslední část se zabývá návrhem uživatelského rozhraní
a uživatelským testováním. Jednotlivá témata jsou diskutována v rovině návrhu s přesahem
do implementace, detailní popis implementace programu není cílem této práce.

Abstract

The aim of this study is to propose design of a web content management system. This work
focuses on architecture, database design, local concepts, and user interface design. Key
concepts and typical problems of a content management system are described. Multiple
solutions for key concepts are investigated and compared to similar solutions and products.
The first part of the study explains system architecture, the following parts discuss global
and local concepts, and the last part deals with the user interface design and user testing.
This work focuses on the application design without a detailed description of the program’s
implementation.

ix

x

Contents

1 Introduction 1
1.1 State of the Art . 1
1.2 Goals of the Study . 1
1.3 Project Name . 2
1.4 Urchin Overview . 2
1.5 Urchin Use . 2
1.6 Technology Used . 3
1.7 Thesis Outline . 3

1.7.1 Introduction . 3
1.7.2 Main Content . 3
1.7.3 Conclusion . 4

2 Architecture 5
2.1 Chapter Overview . 5
2.2 Requirements . 5

2.2.1 Functional Requirements . 5
2.2.2 Non-functional Requirements . 6
2.2.3 Software Requirements . 7

2.3 Architecture Design . 7
2.3.1 Model-View-Controller Architectural Pattern 7
2.3.2 Hierarchical Model-View-Controller Architectural Pattern 8
2.3.3 Front Controller Design Pattern . 9
2.3.4 Use of Hierarchical Model-View-Controller in Urchin CMS 9

2.4 Packages . 10
2.5 Context and Core Objects . 11

2.5.1 Context . 11
2.5.2 Session . 11
2.5.3 Request and Response . 11
2.5.4 Pool . 12
2.5.5 Cache . 12
2.5.6 Link . 12

2.6 Database Design . 12
2.6.1 Database Layer . 12
2.6.2 Database Structure . 13
2.6.3 Alternative Approaches . 13

xi

xii CONTENTS

2.7 Crud Library . 13
2.7.1 Common and Element Crud . 15

2.7.1.1 Entries . 17
2.7.1.2 Components . 17
2.7.1.3 Decorators . 17
2.7.1.4 Validators . 17
2.7.1.5 Converters . 17
2.7.1.6 Filters . 18

2.7.2 Cross and Matrix Crud . 18
2.7.3 Flexibility and Extensibility . 18

3 Core Features and Modules 19
3.1 Chapter Overview . 19
3.2 The Page Axis . 19

3.2.1 Website . 19
3.2.2 Presentations . 20
3.2.3 Pages . 20
3.2.4 Templates and Positions . 21
3.2.5 Page Parameters and System Pages 22

3.3 Internationalization and Localization . 22
3.3.1 File-Based Translations . 23
3.3.2 Database-Based Translations . 23

3.4 The Component Axis . 23
3.4.1 Modules . 23
3.4.2 System Modules . 24
3.4.3 Content Modules . 25

3.4.3.1 Application Modules . 25
3.4.3.2 Element Modules . 25

3.4.4 Components . 26
3.4.5 Elements . 27
3.4.6 Module Templates and Parameters . 28
3.4.7 Linkable Modules . 28

3.5 Security of a Web Application . 28
3.5.1 SQL Injection . 28
3.5.2 Cross-Site Scripting . 29
3.5.3 Authentication and Session Management 30
3.5.4 Cross-Site Request Forgery . 30

3.6 The Permission System . 31
3.6.1 Authentication and Authorization . 31
3.6.2 General Access Control . 31
3.6.3 Action and Data Permission . 32
3.6.4 User and Groups . 32
3.6.5 Permission for Modules and Actions 33
3.6.6 Permission for Presentations . 34
3.6.7 Permission for Page Groups . 35
3.6.8 Additional Features . 35

CONTENTS xiii

3.6.9 Front-End Permission . 36
3.7 Additional Features . 36

3.7.1 Content Work-Flow . 36
3.7.2 Content Preview . 37
3.7.3 Personal Settings . 38

4 Extending Modules 39
4.1 Chapter Overview . 39
4.2 Content Modules . 39

4.2.1 Articles . 40
4.2.2 Content . 40
4.2.3 Enquiries . 40
4.2.4 Events . 40
4.2.5 Forms . 41
4.2.6 Galleries . 41
4.2.7 News . 41
4.2.8 QuickContact . 41
4.2.9 RSS . 41
4.2.10 Search . 41
4.2.11 Sitemap . 42

4.3 Dynamic Forms . 42
4.3.1 Form Implementation . 42
4.3.2 The Form Library . 43
4.3.3 Controls . 43
4.3.4 Validators . 43
4.3.5 Form Processing . 44
4.3.6 Form Security . 44
4.3.7 QuickContact Revisited . 45
4.3.8 Forms Revisited . 45

4.4 Content Search . 46
4.4.1 Entity-Based Search . 46
4.4.2 Content Indexing . 47
4.4.3 Combined Search . 49
4.4.4 Search Engine Service . 49
4.4.5 External Search Engine . 50
4.4.6 Index Module . 50
4.4.7 Search Module . 50
4.4.8 Indexing Table . 51

5 User Interface Design 53
5.1 Administration . 53

5.1.1 Login Screen . 53
5.1.2 Administration Layout . 54
5.1.3 Page View . 56
5.1.4 File View . 58

5.2 Crud Layout . 58

xiv CONTENTS

5.3 Front-end Layout . 60

6 Testing of User Interface Design 63
6.1 Objective . 63
6.2 Target Group . 63
6.3 Test Participants . 64

6.3.1 User A . 64
6.3.2 User B . 64

6.4 Screener . 64
6.4.1 Questions . 64
6.4.2 Selection of Participants . 65
6.4.3 Screener with User A . 65
6.4.4 Screener with User B . 65

6.5 Interview . 65
6.5.1 Topics and Questions . 65
6.5.2 Interview with User A . 66
6.5.3 Interview with User B . 67
6.5.4 Summary of Information . 68

6.6 User Scenarios . 69
6.7 Low Fidelity Testing . 70

6.7.1 Testing Overview . 70
6.7.2 Paper Prototype . 71
6.7.3 Goals and Scenarios . 71
6.7.4 Testing Plan . 72
6.7.5 Testing with User B . 72

6.8 Testing with User A . 73
6.8.1 Testing Summary . 75

6.9 High Fidelity Testing . 76
6.9.1 Testing overview . 76
6.9.2 Goals and Scenarios . 76
6.9.3 Preparations . 76
6.9.4 Testing Plan . 76
6.9.5 Testing with User B . 77
6.9.6 Testing with User A . 78
6.9.7 Evaluation of Testing . 78

7 Conclusion 81
7.1 Achieved Objectives . 81
7.2 Future Plans . 81

7.2.1 Content Versions . 81
7.2.2 File Management . 81
7.2.3 Client Zone . 82
7.2.4 Technical Improvements . 82

7.3 New Modules . 82
7.4 Licensing . 83

CONTENTS xv

A List of Abbreviations 89

B List of Terms 91
B.1 Architecture . 91
B.2 Core Features and Modules . 92
B.3 Extending Modules . 93
B.4 User Interface and Testing . 93

C List of Content Modules 95
C.1 Basic Modules . 95
C.2 New Modules . 96

D Electronic Disc 97

E Database Model 99
E.1 Core Application . 99
E.2 Content Modules . 99

F Sample Application 101
F.1 Description . 101
F.2 Website and Presentations . 101
F.3 Templates and Positions . 101
F.4 Hierarchy of Pages . 102
F.5 Modules and Components . 102

xvi CONTENTS

List of Figures

2.1 Schema of modified MVC pattern with router and user interaction. 8
2.2 Schema of hierarchical MVC pattern. 8
2.3 Hierarchical MVC pattern applied to Urchin CMS. 9
2.4 Urchin CMS structure at the package level. 10
2.5 Database model with core tables and their relations. 14
2.6 Packages and classes of the crud library. 15
2.7 State diagram for common crud with transitions between actions. 16

3.1 Schema of the page axis with presentation, pages and templates. 20
3.2 A sample website with two presentations and several top-level pages. 21
3.3 Schema of the component axis with modules, components and elements. . . . 24
3.4 Organization of content modules into element and application sub-modules. . 26
3.5 The relation between the element table and module-specific tables. 27
3.6 Login process in a regular web application with authentication and autho-

rization. 32
3.7 Database tables of the permission system and their relations. 33
3.8 Managing access rights to actions in the detail of the user group. 35
3.9 The life cycle of an element with visible and hidden work-flow states. 37

4.1 Simple contact form with three mandatory fields: subject, e-mail, and message. 42
4.2 Form processing diagram with views and actions. 44
4.3 Schema of the entity-based search method. 47
4.4 Schema of the context indexing search method. 48
4.5 Schema of the combined search method. 49
4.6 Sequence diagram for the indexing process. 51
4.7 Sequence diagram for the search process. 52

5.1 Login screen for the administration. 53
5.2 Basic layout and main panels in the administration. 54
5.3 Logical organization of actions in the page view. 55
5.4 Page view with hierarchy of pages and page detail. 57
5.5 File view with hierarchy of directories and directory detail. 57
5.6 The view action of an element crud instance showing sample data. 59
5.7 The edit action of an element crud instance displaying a sample record. . . . 59
5.8 The view action of a cross crud instance nested inside a common crud instance. 60
5.9 Basic layout of a front-end page. 61

xvii

xviii LIST OF FIGURES

6.1 Paper mock-up overview with different types of paper components. 71
6.2 User B added a new page for articles. 73
6.3 User A after adding a new component. 74
6.4 Place prepared for the high fidelity testing. 77

F.1 Templates available in the sample application. 102
F.2 Logical hierarchy of the sample website. 103

List of Tables

3.1 Default user groups available in the Urchin application. 33
3.2 Options available to the modules. 34
3.3 Sample modules of various types with assigned options. 34
3.4 Front-end user groups available in the Urchin application. 36
3.5 Summary of work-flow states and their use. 37

4.1 Overview of basic content modules. 40
4.2 Standard controls and validators used in the QuickContact module. 45
4.3 Form fields available in the Form module. 46

5.1 Sections in the administration with description and modules. 55

F.1 Templates and settings of pages in the English presentation. 103
F.2 Components assigned to pages of the English presentation. 104

xix

xx LIST OF TABLES

Chapter 1

Introduction

1.1 State of the Art

In the beginning of 1990s, the web was nothing like in these days. Developers used simple
text editor to build static pages. Users browsed web pages using a historical browser, such
as Mosaic [27]. Most non-technically oriented people did not even know there is something
called the web. Times have changed and now the Internet is much more important than
ever before. Web technologies are accessible, cheap and widely used. Many companies now
prefer online solutions to former desktop applications. Common users have realized that
they have a lot of content to present and share. Today, the Internet serves as a great tool
for sharing different content between users. Users take as granted web presentations and
portals, online shopping and banking, full-text search, or social networks.

With the rise of the Internet, many companies and individuals have begun to present
and propagate themselves on the web. Traditionally, a programmer or an internet agency
was required to create and maintain a website. Managing a website without knowledge
of at least HTML1 [16] and CSS2 [8] technologies was nearly impossible. This approach
is ineffective, time-consuming and expensive for the company. Later, in the end of 1990s,
a first CMS3 application emerged [47]. A CMS system is a type of web-based software that
simplifies management of a website. This system allows easy content editing, templates and
automated indexing of content for search. More advanced features of a CMS are e.g. specific
modules, content preview, user roles and permission.

1.2 Goals of the Study

The first and the most important goal of this study is to propose design of a new content ma-
nagement system. Important fields such as architecture, database design, various concepts
and user interface design are discussed. Proposed concepts and features are demonstrated on
author’s genuine solution, a content management system called Urchin CMS. This project
has already started in January 2011 and is still being continuously developed and improved.

1HyperText Mark-up Language
2Cascading Style Sheets
3Content Management System

1

2 CHAPTER 1. INTRODUCTION

The system serves as both an experimental platform and a valuable tool for website deve-
lopment. The limiting factor for development is time, as author both has a full-time job
and studies at the university.

Secondary goal of this study is to discuss multiple ideas for key concepts. This con-
tains comparison of the most important concepts with other approaches and existing solu-
tions, e.g. massively used open-source content management systems, such as Drupal [10] or
Joomla [24]. Pros and cons of these systems are mentioned as one of the reasons leading to
the development of Urchin CMS. This study could also serve as a rough guide for architects
or developers of content management systems. This work covers all important areas of the
design and architecture.

1.3 Project Name

Before discussing project’s architecture and features, three important names connected to
the project should be clarified. This project began as a simple group of classes repeating
in projects without any name or title. Later, a first version of framework emerged directly
from these classes and has been assigned a working name Web Component Framework.
After that, development of a new content management system has started. This system was
built upon the WCF framework and assigned a working title Urchin CMS (or just Urchin).
During the development of Urchin CMS version 2.0, the underlying framework was revised,
simplified and then renamed to Web Component Framework: Simple.

1.4 Urchin Overview

Urchin CMS is a multi-purpose modular content management system. The system supports
multiple presentations and languages, multiple users with different roles and advanced con-
tent handling. Advanced concept of components and elements provides great flexibility and
effective management of the website content. Components are shared between presenta-
tions, there is no need to create and maintain duplicate content. Permission management
for pages, modules and actions allows different access rights for each user. This is partic-
ularly useful in connection with built-in work-flow feature for approving content. Urchin
CMS is a reliable, fast, and secure solution for small- to medium-size websites.

Urchin CMS installation comes with many basic modules, such as simple content, arti-
cles, news and forms. In example, dynamic form module is used to create different forms
without having any programming knowledge. In addition, many new modules are planned
for future development, e.g. forum, maps, products, or client section. The system is highly
modular and well prepared for adding custom modules. Custom modules extend function-
ality according to client’s specific requirements and needs.

1.5 Urchin Use

There are two main areas where Urchin CMS is expected to be used. The first area is
web presentations. A web presentation features creative design and is usually focused on

1.6. TECHNOLOGY USED 3

offering services and presenting references. The content is static with addition of few forms.
Even large web presentations contain hundreds of articles but only few dynamic features
(forms, comments, enquiries). Advanced functions and custom modules are usually not
used. A good example of a web presentation is a small company website, personal portfolio
or product micro-site.

The second area is web applications. A web application is much more dynamic and
functionally oriented than a common web presentation. Visual design and user interface of
a web application is important as well as functions and content the application offers. Each
application of this type is customized to client’s needs and business logic using specialized
modules. A typical web application is in example a CRM4 system, an e-shop, an educational
system or an intranet.

1.6 Technology Used

From the technological point of view, Urchin CMS is a web-based client-server applica-
tion. This application is written in PHP5 [35] 5.3 programming language and uses either
MySQL [28] or PostgreSQL [40] database for storing its data. The presentation layer of
the application is written using XHTML [50] and CSS6 [8] for formatting and jQuery [52]
library for client-side scripting. Urchin CMS is divided into two main sub-applications: ad-
ministration and front-end. Administration is used for managing website while front-end
presents website content to visitors. User uses any modern web browser to access or manage
website content. Technological requirements will be discussed in detail in the next chapter
entitled Architecture.

1.7 Thesis Outline

This thesis is divided into three main parts with eight different chapters.

1.7.1 Introduction

The first chapter Introduction serves as introduction to the project. This chapter defines
the state of the art, study goals, and presents project overview.

1.7.2 Main Content

The following five chapters form the main body of the study. These chapters are most
important and most comprehensive. Chapter Architecture describes project requirements,
system architecture, important packages, and database design. Chapter Core Features and
Modules is about global concepts of the system, such as pages, components, or security and
permission system. Chapter Extending Modules describes modules and features that are
used to manage website content of different types. Chapter User Interface Design discusses

4Customer Relationship Management
5PHP: Hypertext Preprocessor
6Cascading Style Sheets

4 CHAPTER 1. INTRODUCTION

user interface design of the system and chapter Testing of User Interface Design describes
testing of user interface arranged to improve user experience with the system’s administra-
tion.

1.7.3 Conclusion

The last chapter entitled Conclusion discusses the project future and encloses this study. It
introduces new ideas and features for future versions and shortly evaluates the whole project
and discusses achievements, drawbacks and possible improvements. Most of new features
have already their place on the project roadmap and will be implemented in the future.

Chapter 2

Architecture

2.1 Chapter Overview

The second chapter is entitled Architecture and deals with global concepts, design, and
architecture of a content management system. In this work, a global concept means an ar-
chitectural aspect or a feature that has huge impact on application’s design and architecture
(in contrast to the extending modules that affect only minor areas). The initial section of
this chapter state actual project requirements. The following sections describe application
design, internal mechanics, crud library and security of Urchin CMS and web applications.
The design part describes system architecture, core objects and database layer. Sections
about internal mechanics describe working with pages, modules, and website content. The
last part describes both general security of web application and permission system of Urchin
CMS.

2.2 Requirements

This short section serves as an introduction to further topics in this chapter and clearly
sums up all requirements for Urchin project. Project requirements reflect contemporary
expectations for the system as well as historical development. All requirements stand for
Urchin CMS up to the version 2.2. This iteration is planned for the year 2013, as noted
before. Only fundamental requirements are listed, otherwise the list would be too complex
and confusing.

2.2.1 Functional Requirements

Functional requirements describe functions, processes and behaviour of the application.
In other words, these requirements represent what the system is required to do. All re-
quirements are sorted by their priority. The first list shows application-wide functional
requirements:

5

6 CHAPTER 2. ARCHITECTURE

1. website management - presentations with tree-structured pages

2. content management - system of components, multiple content on each page

3. multi-language system - each presentation might use different language or locale

4. multi-user access - multiple users could use administration at the same moment

5. permission management - user groups and accounts, system of access rights

6. crud library - tool for generation of basic user interface

7. WYSIWYG editing - editing of content without advanced knowledge

8. online preview - user can preview edited content before its publishing

9. caching - reduction of database queries and load

10. content versioning - content revisions on the element level

The second part shows module functional requirements:

1. basic modules - basic content, news, articles, simple form

2. full-text search - search facility and indexing of content

3. advanced modules - dynamic form, gallery, products, linked modules

4. client section - front-end registration, login, and differentiated access

2.2.2 Non-functional Requirements

Non-functional requirements specify attributes and constraints of the application. In other
words, these requirements are about expected qualities of the project, mostly from the
technical point of view. Opposite to the previous list, requirements in this list are sorted
alphabetically, not by priority. Most of these requirements are on a similar level of impor-
tance.

• flexibility - adding custom modules or diverse extensions is simple

• layered architecture - separated programming code, database queries and templates

• modern architecture - object-oriented approach, use of software engineering methods

• performance - programming code is effective, queries are optimized and cached

• simplicity - simple, minimalistic design with structured and documented code

• security - secure application according to actual requirements

• transactions - all database operations use transactions

• usability - well-designed, intuitive and comprehensive user interface

2.3. ARCHITECTURE DESIGN 7

2.2.3 Software Requirements

Software requirements define software technology required to run Urchin CMS application.
In most cases, a LAMP1 stack is used for working web applications and WAMP2 stack is
used for development.

1. Unix/Linux/BSD - operational system for web server

2. Apache 2.2+ - web server

3. PHP 5.3+ - server-side programming language

4. MySQL 5.1+ with InnoDB [21] engine or PostgreSQL 8.4+ - database server

5. jQuery - client-side scripting language

6. XHTML 1.0 Strict, CSS 3.0 - templates and layout

7. modern browser, resolution 1280x1024 or more - administration access

2.3 Architecture Design

2.3.1 Model-View-Controller Architectural Pattern

Model-view-controller is one of the most influencing and commonly used software architectu-
ral patterns. This pattern was originally proposed in 1979 by Trygve M. H. Reenskaug [45],
a Norwegian computer scientist. MVC pattern was proposed as solution for complex soft-
ware systems working with large data sets and user interaction. This architectural pattern
affects the entire application, unlike design patterns that provide solutions for more concrete
problems of a software system. Design patterns used in this project will be mentioned in
the end of this chapter.

Main purpose of the model-view-controller architectural pattern is separation of user in-
teraction and data representation into three parts. The model part encapsulates application
data and business rules. The controller part converts user actions to updates of model and
changes in view. The view part displays output based upon information from the model.
Multiple views might exist for each controller, e.g. a web template, a XML3 [51] file, or
a PDF4 [34] document. Figure 2.1 presents modified version of this pattern. This variant
is also called model-view-presenter [26]. This modification is typically used in web applica-
tions and uses a controller to access the view from the model instead of direct access. The
router part in the diagram serves as a designated controller for routing requests to other
controllers.

1Linux Apache MySQL PHP
2Windows Apache MySQL PHP
3eXtensible Mark-up Language
4Portable Document Format

8 CHAPTER 2. ARCHITECTURE

Figure 2.1: Schema of modified MVC pattern with router and user interaction.

2.3.2 Hierarchical Model-View-Controller Architectural Pattern

Hierarchical model-view-controller is an extended version of basic MVC pattern, inspired by
an older presentation-abstraction-control architectural pattern [53]. For detailed information
about all described architectural patterns, see [55]. As seen in figure 2.2, this pattern is
composed of multiple MVC triplets arranged in a tree hierarchy. Each triplet is relatively
independent and composed of all three parts, model, view, and controller. In addition to
handling user actions, controller part is responsible for communication between the nodes.
First, an action is redirected by the router to a controller in the root-level layer. After
processing in this layer, controllers in the child layer are addressed.

Figure 2.2: Schema of hierarchical MVC pattern.

2.3. ARCHITECTURE DESIGN 9

2.3.3 Front Controller Design Pattern

Front controller [54] is a software design pattern, used especially in web applications. Author
of the pattern is Martin Fowler, a well-known British software engineer. Main idea of this
pattern is to provide a single point that receives and handles user requests for the whole
web application. When used in cooperation with HMVC, the front controller serves also
as the router part in the root-level of hierarchy. Usually, it is also responsible for security,
checking permission, and localization.

2.3.4 Use of Hierarchical Model-View-Controller in Urchin CMS

As stated before in the introductory chapter, Urchin CMS is a web-based application. The
application is divided into two major sub-applications, front-end and administration. Both
parts are based upon HMVC architectural pattern and use two- or three-level deep hierarchy
of nodes. The database layer represents model on all levels, the controller and the view parts
differ. Details of use will be shortly described in the following text. Several features (e.g.
database layer, modules, or crud library) presented in this text will be described in detail
later in this or the following chapter.

In the front-end, each page has assigned a single template and is composed of multiple
components. The root level of hierarchy applies to the whole front-end application and is
composed of the web front controller, database layer, and a page layout. On the lower level,
each node consists of a module controller and a module template. More complex modules,
such as dynamic forms, use a third level that handles concrete form controls, e.g. input or
radio control. See the left half of figure 2.3 for further details.

Figure 2.3: Hierarchical MVC pattern applied to Urchin CMS.

10 CHAPTER 2. ARCHITECTURE

The architecture of the administration is similar to the front-end. The view part of
the top level structure is represented again by the database layer, the administration front
controller and administration layout. There are also two designated front controllers for
handling cron and AJAX requests. On the middle level, each node is represented by a crud
instance or a custom module. Every crud instance or custom module uses its own controller
and templates. Crud instances might be nested and usually contain another level of hier-
archy, represented by crud elements such as components and filters. See the right half of
figure 2.3 for details.

2.4 Packages

Following the architecture design, Urchin application is divided into multiple packages and
sub-packages. Each package is directly mapped to a PHP namespace and consists of num-
ber of classes stored in a separate directory. Urchin CMS is a completely object-oriented
application and includes more than 300 classes of different types.

Figure 2.4: Urchin CMS structure at the package level.

The structure of the application is shown in figure 2.4. The most important package
is core that contains fundamental classes of the WCFS framework. These classes will be

2.5. CONTEXT AND CORE OBJECTS 11

described in detail in section Context and Core Objects. Other important packages are
controllers, models and views that represent all parts of the MVC triad. The package
controller contains front controllers and two sub-packages with common controllers, both
for front-end and administration. The package models equals the database layer and is
composed of classes working with database tables. The package with views contains layouts
and templates for the whole application.

Other essential packages are crud, enums, and helpers, and converters. The package crud
contains a complete library called crud for generation of basic user interfaces. The whole
section Crud Library in the next chapter is dedicated to this invaluable library. Enums are
similar to model classes, they encapsulate an application-wide sets of values, e.g. page states.
Helpers provide various additional functionality, such as working with files, pagination, or
sending e-mails. Converters serve a single purpose, to convert values to string representation
and back again. The idea of converters has been adapted from JSF5 [22] technology.

The last three packages are exceptions, ext, and forms. The package exceptions contains
all exceptions and the package ext external libraries. At this moment, there is only a single
external library, PHPMailer [37]. The package forms contains additional classes for the
dynamic form module. This module is much more complex than standard modules and
therefore has assigned an independent package. The dynamic form module will also be
discussed in section Dynamic Forms of chapter Extending Modules.

2.5 Context and Core Objects

2.5.1 Context

Context is a static class that is accessible from any part of the application. This class is
relatively small, its main responsibility is to provide access to all other core objects, all other
core objects are accessed via this class. It also supports facilities for localization, logging
and basic system messages. This concept was inspired by JSP technology and its interface
ServletContext [23], although the realization in Urchin CMS slightly differs. Context was
introduced in Urchin 2.0, three years after most core objects.

2.5.2 Session

Session object simply encapsulates session and provides its basic security. Session is a com-
mon feature that keeps application settings over otherwise stateless HTTP6 [18] protocol.

2.5.3 Request and Response

Request is object that provides access to headers and attributes of a HTTP request. In
comparison with standard PHP mechanics, the request object also significantly simplifies
working with default values or complex arrays in request. Request enables getting post, get
and cookie values as well as request values and saving uploaded files. Response is a simple

5JavaServer Faces
6Hypertext Transfer Protocol

12 CHAPTER 2. ARCHITECTURE

object that allows sending headers or redirections back to the client. Again, design of both
classes was hugely affected by JSP technology.

2.5.4 Pool

Pool object serves a single purpose, it supplies data for view. Using pool is the only way
how to pass data from the controller to the view. All variables (including nested arrays and
objects) are automatically escaped for security reasons. Design of this object is influenced
by the registry design pattern from [54].

2.5.5 Cache

Cache is a specialized object for caching database queries and other data. Internally, this
object uses a hierarchical tree structure with indices for storing data. This tree structure
is saved to the file system. Data are manipulated using tree nodes with labels, e.g. web →
pages → cs. Tags for random access are also implemented but not used. Today, caching is
used only for basic queries. Use of caching will be definitely improved in future versions of
Urchin CMS.

2.5.6 Link

Link object is responsible for global handling of links (urls), both in the front-end and in the
administration. These links could be static or dynamic and allow adding and removing pa-
rameters. Dynamic links automatically keep previous parameters unless explicitly removed,
static links start without any parameters. In the front-end both rewritten and non-rewritten
links are supported, current setting depends on system configuration.

2.6 Database Design

Well-designed and mature database architecture is the backbone of the Urchin CMS appli-
cation. The whole database sub-system is fully transactional according to OLTP7 standards
and normalized to both third and Boyce-Codd normal forms. The database layer is always
bound to the chosen relational database management system (currently MySQL). On one
hand, each database server requires its own database layer, on the other hand, the concrete
database layer is tailored to the selected database for better performance. In contrast to
the object-oriented application design, plain old arrays are used for data transfer. Unlike
Java, this is a natural approach in the PHP programming language.

2.6.1 Database Layer

The database layer serves as the model part in the model-view-controller architecture and
is based upon the table data gateway design pattern. Each class in the model is mapped to
a single main table and possibly other related tables. This design allows effective separation

7Online Transaction Processing

2.7. CRUD LIBRARY 13

of application logic and queries. Other advantage is relatively simple caching of database
queries directly in model classes. A typical model class is stateless (has no properties)
and provides all methods necessary to work with the underlying table. All models inherit
BaseModel class that enables basic data-manipulation operations, e.g. fetch, update, insert,
delete and transactional operations, e.g. begin, rollback, commit.

Queries used in the crud library are mostly generated while respecting foreign keys and
indices. Both static and generated queries strictly use prepared (parametrized) statements
for better performance and prevention of SQL injection and similar exploits. Basic caching
of queries is already provided, advanced caching with dependencies is proposed for future
implementation.

2.6.2 Database Structure

Database model of Urchin CMS core is composed of about 30 main and 15 additional tables
(for lookups and translations). There are three major and several minor database parts. The
major areas are the page axis, the component axis and the permission sub-system. Minor
areas include search, locale, or logging. Figure 2.5 displays a conceptual database model
with basic entities and relations of both axes. A prefix a_ is used for core tables (m_* for
module tables and v_* for views). The left side of the diagram shows fundamental tables of
the page axis. These tables are a_presentation, a_page, a_template and a_position. The
right side of the picture shows the component axis with tables a_module, a_component
and a_element. Details about all three major parts will be discussed in the following chap-
ter Core Features and Modules together with the application design. A complete conceptual
model with all core entities is available in the appendix Database Model.

2.6.3 Alternative Approaches

There are generally three common approaches how to work with a database in a web appli-
cation. First one, a separated database layer, was already described. The second approach
is to simply embed database queries into the programming code when necessary. This is
common, but definitely not recommended approach as it mixes database queries and app-
lication logic. The last usual option is to use an object-relational mapping (ORM). This is
especially common in the Java EE world, where products such as Hibernate [20] are used.
More alternative ways for storing data are NoSQL database management systems, such as
file-based databases, document-oriented databases, XML-oriented databases, or key-value
storages.

2.7 Crud Library

Crud is an important built-in library in Urchin CMS. The library serves as an efficient
tool for generating user interfaces and is used for managing most database data in the
administration. Controllers inherited from crud library classes are in fact declared, no
advanced programming is necessary except implementation of custom features. As the
library name suggests, crud basically handles four typical operations with records: create,
read, update, and delete. Beyond these elementary functions the crud library allows nesting

14 CHAPTER 2. ARCHITECTURE

Figure 2.5: Database model with core tables and their relations.

of crud instances, filtering of records, validation of input, or adding custom functions, e.g.
sending a mail. All operations very closely cooperate with Urchin permission system. In
example, controller for managing presentations allows only view, detail and edit actions.
Members of all users groups can preview presentations but only administrators are allowed
to edit these records.

Crud works effectively with any database schema that has set up a single integer primary
key for each standard table and properly uses foreign keys. Database relations up to M:N
and M:N:X are supported. Queries in crud-based controllers are generated according to
the definition in the crud controller class. Main advantages of the crud approach are rapid
development, simple maintenance, reduction of duplicated code, and enough flexibility for
adding custom elements or individual functions. There are also no generated files or forms,
just simple and straightforward classes with definitions.

The crud library is composed of several main parts and sub-packages with various el-
ements. See figure 2.6 for detailed structure of this important Urchin package. The main
parts are common crud, element crud, cross crud, and matrix crud. Crud elements are en-
tries, filters, components, decorators, and validators. The central part is common crud that
handles single main table and several linked tables. Only a common crud instance might
contain nested instances of any other type.

Element crud works exactly as the common crud, moreover it is adapted to manage
elements. Elements are special database records used in content modules. Cross crud is
used to manage M:N database relations, matrix crud to handle M:N:X relations. Nesting

2.7. CRUD LIBRARY 15

of instances precisely follows the composite design pattern. Here, a common crud instance
serves as the composite component while cross crud instance, matrix crud instance, or
custom implementation create the leaf part. All mentioned parts will be discussed in the
following sections.

Figure 2.6: Packages and classes of the crud library.

2.7.1 Common and Element Crud

Common crud is the most important and most popular part of the crud library. A controller
built upon a common crud instance manages records in a single main database table (or

16 CHAPTER 2. ARCHITECTURE

its row-based partition) along with data from related tables. The common crud employs
actions to work with records. Four displaying actions and four modifying actions are present.
Displaying actions just show record(s), they do not modify anything. These actions are view,
detail, edit, and add. Modifying actions modify records. These actions are delete, edit, add,
and copy.

All modifying actions are accessed from views and provide transactionally secure before
& after action callbacks to add custom functionality. Both types of actions are implemented
using the command behavioural design pattern. See the diagram in figure 2.7 for details of
interaction between actions in the common crud (selection of action after update/insert is
omitted to keep diagram simple). The element crud works exactly as the common crud. In
addition, it provides facility to work with elements, such as built-in components, work-flow
support or extended modifying actions to work with views instead of tables.

Figure 2.7: State diagram for common crud with transitions between actions.

The view action is the default one and its purpose is to display basic information about
multiple records at once. The view action uses pagination, components to display data, and
filters to narrow results. The detail action displays extended information about a selected
record. It also contains any nested instances that are linked to this record. The edit action
shows a form with existing record and allows updating this record.

The add action shows an empty form for adding a new record. Both edit and add
actions use components to display data and validators to check user input. In addition to
components, all four displaying actions utilize decorators and converters when necessary.

2.7. CRUD LIBRARY 17

The builder design pattern is applied for literally building common crud instances from
entries, components, and other elements.

2.7.1.1 Entries

An entry is a basic unit used in the crud instance. Each entry serves as a container for
a single component and validators. If assigned, a component tells entry how to display
value. A database entry works with a single database column while simple entry does not
require a database field at all. Entries are also responsible for pre-loading component data
if necessary and marking components as required based upon assigned validators.

2.7.1.2 Components

Components present database values to the user in an appropriate format and also assem-
ble these values back before updating or inserting a record. There exist about 40 various
component types in the crud library. Some components only display values in the desired
format, e.g. simple text, date/time, url link, or a value from a joined table. Other com-
ponents are used in forms for editing records, such as input field, text area, radio buttons,
or selection box. Specific components enable selection of files and images, working with
elements, AJAX-based editing, or synchronization between fields. The action component
enables calling custom actions implemented in the controller. This option is used e.g. for
generating new password and sending it to the user in the administration. The hidden
component allows adding default values for the database fields.

2.7.1.3 Decorators

Decorators are simple objects for enhancing displayed data independently of the assigned
component. Several decorators exist in the crud library: to display text before or after
component, to show a custom tool-tip, and to show bold text. Decorators strictly follow the
decorator design pattern.

2.7.1.4 Validators

Validators are used to check user input in the edit and add actions. Each entry might
include one or multiple elements of this type. Validators check user-provided data according
to rules defined in the crud instance. The crud library has included many useful validators,
for e.g. checking non-empty field, comparison with a custom value, regular expression based
checks, or securing value uniqueness against database.

2.7.1.5 Converters

Converters modify values both before injecting them from the database to components and
before putting values from components inside a form back into the database. There is huge
difference between converters and components. Components only format data for rendering,
they in fact do not modify anything. Converter package is located outside the crud library
because converters are widely used in the whole application. Converters are used mostly to

18 CHAPTER 2. ARCHITECTURE

encode and decode strings, transform date formats, or specifically treat database null values
if required.

2.7.1.6 Filters

Filters are simple objects that serve a single purpose, filtering records in the view action.
The crud library provides filters for searching by text, comparison with value or date, custom
list or by selection from other database table.

2.7.2 Cross and Matrix Crud

The cross crud is the third important part of the crud library. It is used to manage M:N
database relations (also called "cross" tables, hereby the name). M:N tables contain nothing
more than two foreign keys to other database tables. A cross crud instance cannot exist
on its own, it must be nested inside a common crud instance. The reason is that the value
of the first column is taken from the parent instance and the user chooses values from the
second column. The cross crud is much more simple than previous parts, it utilizes only
two actions: the view action for displaying data and the update action for saving changes.

The matrix crud works similarly to the cross crud. It manages three-dimensional M:N:X
relations. There is only one table of this type in Urchin CMS. This table is composed of
exactly three foreign keys and is used in the permission sub-system. Again, the value of the
selected column is set up while the user is allowed to work with two remaining columns. The
user interface of the matrix crud therefore looks like a two-dimensional grid. The matrix
crud also uses two actions, the view action and the update action.

2.7.3 Flexibility and Extensibility

The crud library is highly flexible and extensible. There are multiple ways how to extend
the library. The easiest way is to create custom components and other elements. Implemen-
tation of components is very simple, these classes are usually simple and straightforward.
The situation is similar with other elements, validators being the most simple. Many new
elements have emerged this way during the development of Urchin CMS. The second possi-
bility to extend the crud library is to use built-in callbacks. These methods are called before
and after either delete, or insert, or update if used. All callbacks are provided with primary
key value of the record and a corresponding model with data. Modifying the model is also
possible. This option is used very often, e.g. for assigning default page group to the newly
added page or working with positions in records works exactly this way.

Using the action component and implementation of this action in an inherited controller
is the third way to extend the system. In example, sending a new generated password from
the administration to the existing user uses this feature. Advanced programmers might also
override existing methods with custom functionality. The element crud was developed this
way, it is a significant extension of the original common crud with rewritten and enhanced
modifying actions. In fact, an element crud instance works with a view instead of a table.
This view is defined on exactly two database tables, a table with elements and a module-
specific table that differs according to managed module.

Chapter 3

Core Features and Modules

3.1 Chapter Overview

The third chapter named Core Features and Modules discusses core features of a content
management system. Core features are basic ideas that are parts of the global architecture
and affect the whole application. First part of this chapter describes two fundamental parts
of the system, the page axis and the component axis. The page axis deals with vertical
partitioning of a website into presentations and a tree-based hierarchy of pages. The idea
of component axis is based on modules, components and elements. The second part of this
chapter discusses security and the permission system. The section about security identifies
typical security problems of a web application and explains their prevention. The permission
system is the third fundamental part of the Urchin application that is tightly connected to
both the page axis and the component axis. The last minor part discusses several ideas of
advanced content management.

3.2 The Page Axis

The page axis is the first of the core features used in the Urchin application. This section dis-
cusses vertical partitioning of a website into presentations and pages. The database schema
in figure 3.1 displays relations between all tables that make up the page axis. This diagram
shows basic tables for presentations, pages, and templates together with additional tables
for languages, page groups, or parameters. All important parts and features concerning the
page axis will be described in the following text.

3.2.1 Website

In the context of a web content management system, a website is a top-level structure
that contains hierarchy of web pages with static or dynamic content. A website deployed
with Urchin CMS works exactly this way. Concrete website runs on a single domain and
uses a single installation of the system for its administration. Typical website contains one
or multiple presentations, each with a customized page hierarchy. A presentation usually
represents a language mutation or an independent part of the website, e.g. a product micro-
site.

19

20 CHAPTER 3. CORE FEATURES AND MODULES

Figure 3.1: Schema of the page axis with presentation, pages and templates.

3.2.2 Presentations

A presentation is the basic part of the website, the website must contain at least one pre-
sentation. Each presentation has assigned a language and is composed of a hierarchically
arranged tree of web pages. Presentations might be either used as language mutations of the
website, e.g. English and Czech version, or as independent sites of the website, e.g. com-
pany and product presentation. Combination of both approaches is also possible. Different
presentations in the front-end are recognized using a unique url segment. In the future,
running each presentation on a different sub-domain will be supported.

In the administration, basic SEO1 settings for presentations are provided. The website
administrator is allowed to set up presentation title, pretty url, keywords and descriptions.
All of these settings are shared across pages in the same presentation. Presentation para-
meters enable adding custom variables in the presentation scope. This feature is very useful
for custom modules or functionality, but is not used in default application. In the admi-
nistration, the user always selects a single presentation to manage. This severely reduces
complexity of the user interface.

3.2.3 Pages

Pages represent the basic structure of a website. Each presentation contains its own different
set of pages forming a tree-based hierarchy. A typical page has zero or more sub-pages
according to its position in the hierarchy. Main purpose of pages is to present website content

1Search Engine Optimization

3.2. THE PAGE AXIS 21

and allow user interaction with the website. The page content is managed using components
and elements. These units will be discussed in section The Component Axis. Each page uses
a single template with multiple pre-defined positions that serve as containers for components.
In the administration, pages for currently selected presentation are managed in a tree view.
This tree view allows user to perform all basic actions for modifying both pages and content
elements. Page groups are used in the permission management, each page by default belongs
to the main page group.

The page administration provides many additional and useful features. Basic settings
include page title, heading, pretty url and flags for displaying page in the main menu and in
the site-map. It is also possible to redirect page to another page in the same presentation
(cyclic redirections are not allowed). This option is commonly used to redirect to the first
sub-page in the lower level of hierarchy. Each page might have planned publication for
a chosen interval or belong to the restricted zone. Pages in the restricted zone are available
only to the logged users in the front-end. Similarly to presentations, pages allow user to
edit basic SEO parameters, e.g. pretty urls, keywords and description. Changing position
of a page is possible manually or using a drag-and-drop feature in the tree view.

The diagram in figure 3.2 shows a simplified structure of a company website. This website
is designed using the described principles. The website has two different presentations that
serve as English and Czech language mutations. Each presentation has several pages, the
structure of pages differs with the presentation. In the diagram, the English presentation
has five different pages: home page, news, services, references, and contact while the Czech
mutation has only three pages: home page, services, and contact (all system pages are
omitted).

Figure 3.2: A sample website with two presentations and several top-level pages.

3.2.4 Templates and Positions

Templates are important for displaying page content. A template represents page layout
and is very closely related to the graphical design of a website. In example, a website has

22 CHAPTER 3. CORE FEATURES AND MODULES

three graphical layouts: a home page, a common page, and a product page. Each layout
corresponds to a different template. The template usually contains one main and several
other positions for assigning components. The number and location of positions depends
on the concrete template and is fixed. Templates and their positions are designed before
the website content is created. These settings are static and cannot be changed by the user
via administration (manual change in the database is possible without any harm). Each
page uses a single template that is selected during the page creation. Available positions,
as well as assigned components and their elements are visible in the page detail in the tree
view. All templates internally use a built-in PHP templating system [36], which is the most
minimalistic solution.

3.2.5 Page Parameters and System Pages

Page parameters enable setting up custom variables within the page scope. With appropriate
permission, the user can edit these parameters in the administration. There are two different
types of page parameters, custom and system. Both types work similarly, they are key-value
pairs assigned to the selected page. Custom parameters are used for implementing custom
modules and functions. In every presentation, there are five system pages, distinguished by
system parameters. System pages and parameters cannot be deleted because they provide
fundamental functionality. The default system parameters are:

• is_homepage = 1

• is_sitemap = 1

• is_fulltext = 1

• is_error_404 = 1

• is_error_403 = 1

The home-page serves as the default page in the presentation, the site-map displays
a simple tree with pages and links. The full-text page shows results of built-in search. The
error pages are shown to the visitor if he requests non-existing page (404 Not Found) or is
not authorized to view the requested page (403 Forbidden).

3.3 Internationalization and Localization

Urchin CMS is a completely multi-lingual application. Many languages are supported both
in the administration and in the front-end. Each language has assigned a locale for format-
ting strings and adjusting user interface. All files and translations in the system use the
UTF-8 [46] encoding. The Czech and English languages are default for the administration,
the Czech, English, German, and Swedish languages are available in the front-end. Adding
a new language to the front-end requires translation of all terms and putting them to the
configuration file. This new language must be added to the a_language table and selected
in the presentation settings. Internationalization and localization applies to all strings, such
as titles, labels, and feedback messages.

3.4. THE COMPONENT AXIS 23

3.3.1 File-Based Translations

From the technical point of view, two different approaches are used for translating terms.
The first technique is very simple and flexible. It uses a translation method of the Context
class. This method takes a string as an input and returns a translated term. The input
string also serves as a default value, no artificial keys are necessary (but sometimes used
for feedback messages). Hence this method is suitable only for short terms up to a single
sentence. Values are looked up in the array with translated strings that serve as a simple
key-value storage. Dynamic parameters in the translated terms are also supported. This
system is hugely influenced by the QT framework [41] for C++ and its internationalization
system.

3.3.2 Database-Based Translations

The second method is used exclusively for database-stored system terms in the database.
For each database table and column using this approach, an additional table exist. This
translation table appends suffix *_ext and contains translated strings along with a foreign
key to the language table. In example, module or state names are translated using this
method. Terms translated this way are never modified by the user and are often cached to
counter an additional join required to retrieve these records. Moreover, this method is used
only in the administration. Other popular approaches for translating strings are gettext [12]
or storing all terms in the database thus allowing the user manipulate this data.

3.4 The Component Axis

The component axis represents the second most important core feature employed in Urchin
CMS. This concept deals with horizontal partitioning of a website that is implemented using
a unique system of components. Components are derived from modules and serve as simple
containers that are assigned to web pages. A typical component contains one or multiple
elements. An element is basically a specific database record with specific parameters and
behaviour, such as a simple text, an article, or a web form. Elements represent the lowest
level of website content. Diagram in figure 3.3 shows all database tables of the component
axis and relations between these tables. Main tables work with modules, components and
elements. Remaining tables enable linkable modules and store additional information, such
as module templates or parameters. All major parts of the component axis will be discussed
in detail in the following text.

3.4.1 Modules

A software module in Urchin CMS is an independent unit of code that serves a single pur-
pose. Each module always contains one or more administration controllers and a database
script. Most modules employ additional files, such as model classes for all database-oriented
modules or templates and web controllers for front-end modules. Regardless of type, each
module has a public interface and hidden implementation. Public interface is used for com-
munication with other parts of the application whereas all internal operations are separated

24 CHAPTER 3. CORE FEATURES AND MODULES

Figure 3.3: Schema of the component axis with modules, components and elements.

from other system units. This design serves both flexibility and maintainability of the Urchin
application. Installing a new module is simple and has two phases, copying files and running
the database script. The installation script connects the new module to the system, adds
new database tables if required and sets up desired permission for default user groups.

Two basic types of modules exist in the system, called system and web modules. System
modules form integral part of the system that is used exclusively in the administration for
internal tasks and settings. System modules never contain sub-modules and therefore use
only one controller per module in the administration. Content modules are used in the
front-end for presenting website content to the visitor. In contrast to the system modules,
more complex content modules consist of multiple sub-modules. Content modules are also
managed from the administration utilizing crud-based or custom controllers.

3.4.2 System Modules

System modules are used solely in the administration and allow managing system settings,
permission and various other features. Most system settings are restricted only to the
administrator group, not ordinary editors or supervisors. Only user settings are available
for all user groups. Main areas handled by the system modules are shown in the following
list.

• permission - users, groups and access rights

• modules - internal settings and parameters for modules

• caching - manual purge of cached data

• lookup tables - system states and enumerated values

3.4. THE COMPONENT AXIS 25

• user log - logging of user actions in the administration

• user preferences - personal settings, favourite links, internal contact form

3.4.3 Content Modules

Main purpose of content modules is to enable administration of the website front-end. Con-
tent modules are used to manage website structure and content from the administration. As
denoted in the previous text, some content modules contain multiple sub-modules. Content
modules are divided into two categories according to the module type. These two categories
are application and element modules. Complex modules commonly contain sub-modules of
both types.

3.4.3.1 Application Modules

Application modules work in the same manner as the system modules. The administration
of system modules is exactly the same as for system modules and uses similar common crud-
based or custom-implemented controllers. Unlike element modules, these ones do work only
with standard database records, not elements. The application modules either provide basic
data for the front-end or support element modules in delivering content. The following list
shows most relevant areas that use application modules outside the content module scope.
Application modules cooperating with element modules will be discussed in the following
text.

• the page axis - presentations, pages, templates, positions

• the component axis - components and elements

• localization - languages, locale, translations

• files - file and image manager

• indexing - transformation of content for full-text search

• clients - front-end users and groups

3.4.3.2 Element Modules

In contrast to application modules, element modules are used especially to provide content
of various type to the front-end. These modules work with special database records entitled
elements. Elements share common features but differ in module-specific options. Element
records are always managed using a controller that is instanced from the element crud.
Administration of elements closely cooperates with permission sub-system and content work-
flow. Technical details about elements will be described in a separate section.

A simple content module always equals a single element module. A complex content
module is usually composed of a single element sub-module and one or more application
sub-modules. In this case, the element module is responsible for publishing content on the

26 CHAPTER 3. CORE FEATURES AND MODULES

website while the supporting application modules take care of additional information. See
figure 3.4 that shows examples with structure of several content modules. In the diagram,
three of basic content modules are present. These are Article, Event, and QuickContact
module. Component entities in figure represent whole modules, class entities mirror both
administration controllers (sub-modules) and database tables.

Figure 3.4: Organization of content modules into element and application sub-modules.

3.4.4 Components

Components are derived from the element modules and used for publishing content on the
website. The module serves as abstraction while components realize this abstraction. In
example, the module Articles has derived two components entitled Sport and Business with
articles about these topics. A component serves as a simple container for elements and is
used to manipulate these elements as a group. The maximal number of elements allowed in
the component is defined in the element module. There are modules that allow zero, one, or
unlimited number of elements per component. Modules with unlimited number of elements
are used to group similar entities, e.g. news, articles, or events. Modules with a single
element represent content without records, e.g. simple text, any forms, enquiries. Modules
without elements do not have any content and are used only for default system pages with
search results and a site-map.

Components are being assigned to website pages. As described before in the previous
section The Page Axis, every page has defined a template with positions. These positions
work as place-holders or slots, one position for each component. In example, a page Contact
contains components with a short text, a map, and a contact form on three different posi-
tions. All menus are built-in and do not require components. Components do not have any
settings beside title, internal description and a voluntary module template. All settings are

3.4. THE COMPONENT AXIS 27

managed on the element level, a component either is or is not assigned to the page. Com-
ponents are very flexible, the same component might be assigned to multiple pages, even
across the presentations. This possibility prevents unnecessary duplication of the website
content.

3.4.5 Elements

As already denoted, elements are specially designed database records. Elements represent
the low-level layer of website content. From the technical point of view, each element is
composed of two parts, the element part and the module extension. Both parts are connected
via a 1:1 database relation using the class table inheritance design pattern [9]. The element
part is always stored in the a_element table and the module extension in a module-specific
table, e.g. m_news for news elements. The diagram in figure 3.5 displays relations between
the a_component table, the a_element table and three module-specific tables.

Figure 3.5: The relation between the element table and module-specific tables.

The administration of elements provides a handful of useful settings and features. Ma-
naging element title and planning publication is available to each element. This includes
setting up dates and the work-flow facility. The dates define the interval when the element
is visible on the web, the content work-flow will be discussed in section Content Work-Flow.
Other settings and options vary with the module. Many additional content-oriented features
of the application are also handled on the element level. This includes content indexing for
the full-text search facility, content approval, online preview or logging users’ actions in the
administration.

28 CHAPTER 3. CORE FEATURES AND MODULES

3.4.6 Module Templates and Parameters

Module templates is an optional front-end feature of Urchin CMS. In the former versions of
the system, each module had exactly one set of templates for the front-end. All components
of the module therefore had to look exactly the same on the web. In contrast with this
situation, module templates allow the user to choose a set of templates separately for each
component of the same module. All additional files for templates must be created and
installed before the selection is available.

3.4.7 Linkable Modules

Linkable modules add an additional and slightly different concept for handling front-end
content. Instead of assigning components to positions on the page, components of the
linkable modules are connected to elements. A linkable component cannot be published on
its own, the parent element is mandatory. Concept of linkable modules enables additional
functionality for elements, such as adding a photo gallery, a discussion or voting, or adding
a map with coordinates. In addition to the graphical appearance, the assigned component
has information about the parent element. At the moment, this feature is experimental with
only the Gallery module available. For logical reasons, each element might have assigned
only one component per linkable module, e.g. one discussion and one gallery but not two
discussions.

3.5 Security of a Web Application

This section lists typical and wide-spread security problems of web applications. The fol-
lowing text discusses details of four common security problems according to the OWASP2

project. The investigated areas are: SQL injection, cross-site scripting, authentication and
session management, and cross-site request forgery. Each problem is shortly described along
with its common causes and solutions, both general and Urchin-specific. Other types of se-
curity problems are omitted in this work. The most recent stable list of top 10 security risks
is available at [29] and the most present but pending list accessible at [32] for details.

Additional security features in the Urchin application are related to either the permission
sub-system or specific modules. Details about permission and access rights are discussed in
the following section entitled The Permission System. The most remarkable content modules
are described in chapter Extending Modules including security aspects of these modules.

3.5.1 SQL Injection

SQL injection [31] is a most common but under-estimated type of attack in the web envi-
ronment. It is not difficult to perform this kind of exploit even for an average programmer.
A successful attack often results in data loss, theft, or corruption. A software application
is vulnerable to the SQL injection if its database queries allow putting untrusted data in
the query construction. Untrusted data come usually from the user’s input or a similar

2The Open Web Application Security Project

3.5. SECURITY OF A WEB APPLICATION 29

source. The injection occurs when the data are incorrectly escaped or directly concatenated
into the query. Other types of injection also exist, this includes exploiting operating system
commands or various application parameters.

The solution for this problem is to never trust the user’s input and use a secure API3 to
prevent the vulnerability. The user’s input must be always validated and sanitized before
using values in the application. The validation checks e.g. the data type of the value, allowed
interval or white listing. A good API must enable separation of database queries and their
arguments. Well-known libraries for the PHP language that satisfy these requirements are
PDO4 [39], ADOdb [1], and MySQLi [38].

In the case of Urchin CMS, validators are widely used for controlling input, input values
are sanitized and the PDO library is employed for building database queries. The whole
model layer uses this library for building prepared queries. A tricky part comes with the
crud library that in addition uses dynamic queries. Crud queries include parameters such
as table or column names that cannot be parametrized this way. But this is not a security
risk because table and column names are always statically defined in the crud instances
so they never come from the user’s or other dynamic input. The limit clause cannot be
parametrized either, a simple solution here is to check whether the value is a valid integer.

3.5.2 Cross-Site Scripting

A cross-site scripting (or XSS) vulnerability [30] occurs when a non-escaped value is output
to the user. This value comes from the user’s input or another source and contains a text-
based script that exploits the website. The attack then performs a malicious action, e.g.
redirects the user, steals his cookie or inserts unwanted code into the page content. In
example, a stolen session identifier from the cookie is often used to further exploit the site
using a CSRF5 attack. The solution for this security problem is to correctly escape all
untrusted values before propagating them into the browser. The concrete escaping depends
on the context, e.g. a safe string for HTML output differs to a safe string in the JavaScript
context.

Urchin CMS employs this approach on the view level. Templates include slots that are
used to output variables in the HTML context. All template values are sanitized in the Pool
object before sending them to the template. Inserting cascading style rules or client scripts
is not allowed in any content field and automatically excluded from rendering. Displaying
HTML is only possible in fields that use the TinyMCE [44] WYSIWYG editor. The Link
object escapes all parameters in automatically generated links.

The caveat of the WYSIWYG content editing is that it naturally requires modifying
and rendering of the HTML code. The automatic escaping procedure therefore cannot be
utilized. WYSIWYG content editing is allowed only in the back-end by editors and all
actions in the administration are logged. This protection is far from being perfect, but suf-
ficient. More sophisticated solutions also exist, in example the HTML Purifier project [17],
lightweight mark-up languages, such as BBCode [4], or a mark-down syntax. The first li-
brary is a verified solution but is a total overkill comparing its size to the Urchin application.

3Application Programming Interface
4PHP Data Object
5Cross-Site Request Forgery

30 CHAPTER 3. CORE FEATURES AND MODULES

The second one is a possible option, but offers only a reduced comfort and set of functions
for the user.

3.5.3 Authentication and Session Management

This section shortly describes security vulnerabilities tied to authentication, session, and
account management. The attack of this type is possible in several different ways. Plain-text
passwords in the database present severe risk if the attacker gains access to the database.
The authentication process might be exploited if non-secure or weak hash functions are
employed. The session is vulnerable to attacks if the session identifier is exposed in the
URL, an application is vulnerable to XSS attacks, or the session is not regenerated after
significant actions, e.g. logging in. A stolen session ID enables exploiting user accounts and
data, especially in the case of privileged accounts.

The Urchin application uses several steps to prevent this kind of attacks. This prevention
begins with the authentication process. Passwords in the database are stored in an encrypted
form and salted to prevent a rainbow table attack. In the current minor version, the former
hash function SHA-1 [11] used for storing passwords has been replaced with the stronger
SHA-2 variant. Functions for account management do not expose vulnerable information,
such as user identifier, login, or mere existence of the user in the database. All actions in
the administration are logged, including authentication.

The session identifier is changed after significant actions, such as when user logs in. The
log out link is provided to explicitly log out the user and remove his session data. If the user
closes browser instead of logging out, the session time-out applies after the defined interval.
As described in the previous text, additional XSS protections are utilized to prevent stealing
the session identifier. In addition, a completely custom session handler and an optional use
of SSL6 connection for the login form are planned to further improve security.

3.5.4 Cross-Site Request Forgery

The cross-site request forgery (or CSRF) [33] is the last type of attack listed in this text.
This attack occurs when the hacker forges a HTTP request. The user is then tricked to
submit this request, generally using social engineering methods. In example, he unwillingly
submits this request via the image src attribute that includes a malicious link. XSS exploits
are also used for triggering this attack. The success of the attack depends on predictability
of the forged request. The simple but sufficient solution for this problem is to generate
a unique and non-predictable token for each request.

Urchin CMS employs exactly the previously stated method. Requests that modify data
in the application are always sent via the POST method. This includes all forms in the
application. The token is generated before the page is loaded, so it is unique for each non-
AJAX request and shared for multiple AJAX requests on the same page. On the other side,
simple links do not need this security mechanism because they do not change any data in
the application.

6Secure Sockets Layer

3.6. THE PERMISSION SYSTEM 31

3.6 The Permission System

This section of chapter Core Features and Modules discusses the permission system that
is the last of the three fundamental concepts of the Urchin application. The first part
of the text explains main ideas behind managing user accounts and permission in a web
application, e.g. access control, authentication, authorization and access rights. The second
part describes application of these ideas in Urchin CMS. This part describes user groups,
managing access in the system and differences between the administration and the front-end.
The last short part discusses planned permission management on the front-end.

3.6.1 Authentication and Authorization

Authentication and authorization are the two most important mechanisms concerning con-
trolled user access in an online application. Authentication is the process of identifying the
user and verifying his identity. Authentication systems depend on a unique information
known only to the system and the user. Such information is usually a common password.
Other methods are also possible, e.g. using a client certificate or a fingerprint. The user is
challenged to provide his unique information in the login phase.

In contrast to the authentication, the authorization mechanism is used to determine the
level of access the user should have assigned. Authorization mechanism is utilized after
the user is successfully authenticated. Based on the permission settings, the application
authorizes the logged user to perform particular operations and access system resources.
Both mechanism could be either separated, e.g. using different software or servers, or tightly
coupled, e.g. inside the same application. The latter option is common in web applications.
Figure 3.6 shows a simplified login process for a web application with both authentication
and authorization facilities.

3.6.2 General Access Control

Every content management system requires some kind of access control to recognize the user
and grant him permission to work with the application. The most primitive systems use
a simple authentication mechanism that checks user credentials against static configuration.
User accounts in such an application cannot be added or edited. More complex systems work
with users. Access rights are connected to the users and this kind of application supports
multiple user accounts.

Advanced applications employ a more sophisticated system of permission for the admi-
nistration, including user accounts and groups. User groups serve as roles, e.g. admin or
editor. Access rights are therefore granted to the groups instead of users. User groups are
effectively used both to combine access rights from more than one user group and manage
permission for many users at once. User groups could be either fixed or dynamic, or both.
In addition to the administration, many web applications also manage user access to the
front-end.

32 CHAPTER 3. CORE FEATURES AND MODULES

Figure 3.6: Login process in a regular web application with authentication and authorization.

3.6.3 Action and Data Permission

There are two most important models to manage permission for web applications, either
an action-based approach (also called action control list) or a data-based approach. Non-
trivial web applications and content management systems combine both methods up to
some extent. The action-based approach works with roles, objects and operations while the
data-based approach works with roles and records. User roles are represented by user groups
and accounts as already denoted in the previous text.

The action-based model defines objects and operations. Objects represent various entities
that have attached a set of operations. Entities are in example files, modules, or resources.
Each entity-operation pair has defined the basic access, either allow or deny. User roles
have assigned these access rights as required. The data-based approach allows fine-grained
permission management within a single entity, such as a database table. This method
enables differentiated level of access to records of this table that would not be possible with
the action control list.

3.6.4 User and Groups

The administration of the Urchin application uses a combination of security mechanisms
described in the previous text. Users belong to zero or more user groups and access rights
are associated with the user groups. Four user groups with predefined access rights are
provided with the installation, as enlisted in table 3.1 along with summary of permission.
Access rights for both default and custom user groups are completely customizable. New
groups and accounts might be added later.

3.6. THE PERMISSION SYSTEM 33

user group visible used by summary of access rights
editor yes client create and edit content
supervisor yes client as editor + publish content, manipulate pages & files
admin yes client as supervisor + manage accounts, system tasks
root no developer as admin + manage user groups and permission

Table 3.1: Default user groups available in the Urchin application.

The permission system includes three independent levels of controlling user access, these
are modules & actions, presentation and pages. Figure 3.7 displays a database model with all
important areas of the permission system. Details of all levels of permission will be discussed
in the following text. Access rights to all areas are denied unless explicitly assigned to the
group. Even the root user group does not have unlimited permission.

Figure 3.7: Database tables of the permission system and their relations.

3.6.5 Permission for Modules and Actions

Implementation of access rights directly follows the already described action-based approach.
Urchin modules serve as objects and options as operations performed on these objects.
There are six defined options in the Urchin system, as explained in table 3.2. Each module
has assigned one or more options (the view option is always present). The module-option
pairs are immutable and provide the basic matrix for assigning permission to the user
groups. In figure 3.7, the a_module_in_option table contains all available pairs and the
a_user_group_in_module_option table stores access rights assigned to the user groups.

34 CHAPTER 3. CORE FEATURES AND MODULES

access option common use
view view list of records
detail view detail of record, access nested crud instances
edit edit existing record
add add a new record
delete delete an existing record
approve publish element (element modules only)

Table 3.2: Options available to the modules.

module type assigned options
Caching system view, edit
Content element view, detail, edit, add, delete, approve
Language system view, detail
News element view, detail, edit, add, delete, approve
Page application view, detail, edit, add, delete
Presentation application view, detail, edit
Tree (of pages) system view

Table 3.3: Sample modules of various types with assigned options.

Assignment of options depends on the module’s purpose. Simple modules have only
view while more complex modules employ up to all five basic options. The approve option
is connected to the content work-flow and therefore available only to element modules.
Content work-flow will be further described in the last section of this chapter. Table 3.3
shows sample modules together with available options and additional information.

Common crud works with all five basic options, element crud with all six options, and
cross crud only with view and edit options. Main crud actions are directly mapped to the
options, the crud instance is adjusted according to the assigned access rights. Several actions
(methods) usually share a single access option, both in crud-based and custom controllers.
Access rights are managed using the matrix crud, as seen in figure 3.8 that displays part of
these settings. This is the only use of a matrix crud instance in the application.

3.6.6 Permission for Presentations

Data-based access rights in the Urchin application are managed on two levels, the presenta-
tion level and the page level. This feature is not available nor planned for e.g. components
and elements although custom implementation is possible. Presentation-based access rights
are very simple. If the user has sufficient permission, he can perform actions in the presenta-
tion, otherwise he cannot. As displayed in figure 3.7, the table a_user_group_presentation
stores these settings. This settings is useful when different users are responsible for different
presentations. Users are allowed to access all presentations according to default settings, so
this permission is in fact suppressed if not required.

3.6. THE PERMISSION SYSTEM 35

Figure 3.8: Managing access rights to actions in the detail of the user group.

3.6.7 Permission for Page Groups

Permission for page groups is a mechanism similar to the presentation access. The idea
behind this feature is to separate responsibility for pages of a large website into smaller
groups. Page groups are then assigned to the user groups. Each page group could contain
pages from different presentations. The table a_user_group_in_page_group is used to
store these settings, see figure 3.7 for details. As well as for presentations, use of this feature
is optional. Each page belongs by default to the main page group, this cannot be changed.
The main page group is pre-selected for all predefined user groups. Additional page groups
are then added for advanced page management.

3.6.8 Additional Features

This short text describes two minor features connected to the permission system. The
first must-have feature is detailed logging of all modifying actions in the administration.
Modifying actions change data in the database, e.g. edit or delete. Logging in and out
of the application is also tracked. Non-altering action are not logged to prevent excessive
size of the log. Each log record includes information about the user, module and action
performed, unique record identifier, IP address and the time of change.

The second feature is the built-in soft delete. The soft delete sets record status to
deleted (or similar) instead of physically deleting the record. This option avoids potential
data loss and might be also useful in the future for content versioning or a recycle bin facility.
There are also two minor drawbacks of this approach, the larger size of the database and the

36 CHAPTER 3. CORE FEATURES AND MODULES

user group registered access rights note
visitor no view public pages any non-registered visitor
registered yes browse client zone
member yes browse client zone for custom options

Table 3.4: Front-end user groups available in the Urchin application.

necessity to exclude those "deleted" records in queries, such as counting records. Complexity
of queries is slightly reduced using views for all content modules.

3.6.9 Front-End Permission

Even though the front-end registration and user have not been yet implemented, basic ideas
for front-end user management already exist. The same concept of users and user groups
will be utilized for the front-end. Two user groups are planned, registered user and member.
Table 3.7 shortly summarizes all front-end user groups. Page settings already enable putting
the page into the client zone. Users on the web will register and log in to the system using
a pair of new modules. Those that do not register will remain visitors. Visitors are allowed
to browse any public page of the website.

3.7 Additional Features

This short section briefly describes three minor but important areas connected to the core
features, especially to elements and permission management. These topics are content work-
flow, content preview and personal settings. The content work-flow describes the built-in
facility for approving content while the content preview enables previewing elements before
they are published. Personal settings is about customizing user account and settings.

3.7.1 Content Work-Flow

A simple work-flow management is an integral part of the Urchin application since its first
version. The work-flow is realized on the element level, so it is automatically applied to
every element module and therefore to any publishable content of the website. Pages are
not part of this sub-system because they in fact do not store any content, only contain
positions for components with content.

The element life cycle includes five possible states, as displayed in figure 3.9 featuring
a comprehensive state diagram. Element work-flow states are closely coupled with the
permission system and its approve option. There are four states used in the work-flow:
the edited, the waiting, the approved, and the rejected state. The user can switch between
element states as depicted in the diagram if he has the corresponding permission. The delete
state is not a part of the work-flow management, it is used only for the soft delete feature.
Softly deleted elements are never displayed in the administration.

Newly created element have always assigned the edited state. If the user has assigned
the approve option for a concrete module, he can change element of this module to any

3.7. ADDITIONAL FEATURES 37

Figure 3.9: The life cycle of an element with visible and hidden work-flow states.

state permission required typical use
edited edit or add newly created and incomplete elements
waiting edit or add completed elements waiting for approval
approved approve elements published on the front-end
rejected approve rejected elements that require re-working

Table 3.5: Summary of work-flow states and their use.

state according to the element life-cycle. Without this permission, the user can only switch
between the edited and the waiting state (assuming he has rights to edit or add the record).
Table 3.5 summarizes all work-flow states with further description. Talking about the de-
fault user groups, administrators and supervisors have assigned the approve option for each
content module. These users can both create and publish content. In contrast, editors do
not have this option so they cannot publish anything.

3.7.2 Content Preview

Content preview is a simple feature that does exactly what the title says. Content preview
allows the user to preview content elements before they are visible to the website’s visitors.
Preview links are available in the tree menu either for a page, a component or a selected
element. In example, the component preview shows a list of articles while the element
preview shows detail of a selected article. Previewed page looks exactly like the original
front-end page with addition of non-approved elements and a simple panel with summary
of preview details. Content preview does not support previewing changes during element
editing as this information is not saved in the database before saving.

38 CHAPTER 3. CORE FEATURES AND MODULES

3.7.3 Personal Settings

Personal settings and options in the administration are rather simple. Basic settings include
changing user’s password and language for the administration. The second feature is a simple
contact form. This form allows the user to directly submit a bug or contact the system’s
developer. Favourite links serve as bookmarks in a browser. The user can add any visible
page in the administration to these bookmarks, e.g. a page, a concrete record or a quick link
to the module. Added links are available both in the welcome page of the administration
and in the system module Favourite. The last user-oriented option is help. Help module
is planned for the future and should contain user-friendly instructions for basic tasks and
operations in the system.

Chapter 4

Extending Modules

4.1 Chapter Overview

The fourth chapter describes extending modules. In contrast to the core features, each
module affects only a minor part of the application, not the entire system. In the context of
a content management system, these extedning features are usually implemented as content
modules. A particular content module is not an essential part of the system, instead it
enhances its function. Urchin CMS has already included a set of basic content modules, e.g.
Content module for publishing simple texts.

The first part of this chapter shortly describes several content modules coming with
the default installation of the system. Content modules are used to manage and publish
content on the website and adding it to the pages. The second part discusses two important
concepts, these concepts are forms on the front-end and search. Full-text search is used to
search for keywords in the website content and forms to collect data from users. Both topics
include general overview of various approaches and a detailed solution used in Urchin CMS
including corresponding content modules.

4.2 Content Modules

Concept of the component axis and modules has been already discussed in the previous
chapter. Content modules are used to manage website content of various type. This section
briefly describes several modules coming with the Urchin installation, their features and
typical use. In addition to default capabilities, all modules might be adapted to specific
requirements.

Table 4.1 shows a simple overview of content modules including a number of elements
and a short description. Number of elements the module uses depends on the content
module type. In the following text, all content modules are sorted alphabetically. Modules
Search, QuickContact and Form will be described in two separate sections along with related
concepts and general overview.

39

40 CHAPTER 4. EXTENDING MODULES

module elements each element represents
Articles many single article with perex and content
Content one piece of structured text
Enquiries one poll with question and answers
Events many event with dates and description
Forms one dynamic form with custom fields
Galleries one gallery with multiple images
News many single new
QuickContact one pre-defined contact form
RSS many single data feed
Search zero n/a
Sitemap zero n/a

Table 4.1: Overview of basic content modules.

4.2.1 Articles

Articles module allows adding multiple articles per component. In contrast to news, articles
require filling in both perex and article content. Other fields are optional, e.g. date or
preview images. Articles have always available both list of articles and their detail.

4.2.2 Content

Content is the simplest but most fundamental content module. Each component of this mod-
ule contains only a single element with formatted text. This text is edited by a WYSIWYG
editor and allows storing HTML content. Content module is widely used for text pages with
formatting, images, as well as for minor text blocks, e.g. a short note, or a simple banner.

4.2.3 Enquiries

Enquiry module provides a basic tool to interact with a visitor. A component of this module
has only one element that is the enquiry itself. The enquiry consists of one question and two
or more answers. Number of votes is tracked for each answer. Voting attempts are logged
and the module includes a simple cookie- and IP-based mechanism to prevent duplicated or
fake votes.

4.2.4 Events

Events module is used for managing and displaying events. Events are actions that take
place at a given time at a given venue, e.g. a conference, a football match, or an exhibition.
This module allows setting date (or interval), venue, category, and description for each
event. Date of beginning and short description are required fields; venue, category, and long
description optional fields. On the front-end, Events module allows filtering and searching
events by all fields. In projects, adjustments of this module are expected because the default
version never fits all possible requirements in this area.

4.2. CONTENT MODULES 41

4.2.5 Forms

Forms module allow the user to intuitively create dynamic forms for the website. These
forms can contain variable types of fields. All form fields and settings are configurable by
the user in the administration. This module will be further described in section discussing
the form library.

4.2.6 Galleries

Gallery works as a container for publishing photo galleries on the web. A component of
this module contains only one element, that is the gallery. Each gallery consists of multiple
images with thumbnails, large pictures, and short description. Gallery is available both as
standard and linkable module, so it can work as a stand-alone component or be attached to
other element, e.g. an article.

4.2.7 News

News is a commonly used module for publishing short news on the website. This module
is similar to articles and allows multiple news per component. Required fields are perex
and date of publication, optional parameters include long text and preview image. A news’
detail is available only if the long text is filled in.

4.2.8 QuickContact

QuickContact module provides a basic contact form with three fields: subject, e-mail, mes-
sage. Unlike dynamic forms created with Form module, quick contact form is static and
immutable. This module will also be described in section discussing the form library.

4.2.9 RSS

RSS 1 is a XML-based technology for publishing frequently changed content in a standard-
ized format [42]. This module conforms to the RSS 2.0 specification and provides option to
create feeds from website content. Each element of this module equals a single feed, each
component therefore contains list of one or more feeds. Data source is chosen from active
component-on-page pairs where the component must be derived from a feedable module.
Feedable modules are currently News and Articles, e.g. those having textual content and
multiple elements per component.

4.2.10 Search

Search module allows user to search content of the actual presentation. Details of this module
are described in a separate section that concentrates on search methods and implementation
in Urchin CMS.

1Rich Site Summary

42 CHAPTER 4. EXTENDING MODULES

4.2.11 Sitemap

Sitemap is a simple module that renders hierarchy of pages for the actual presentation. The
tree of pages contains all levels of the hierarchy and includes links to all pages. This module
provides a common feature that helps the visitor to navigate the website.

4.3 Dynamic Forms

Forms enable a visitor of the website to input and send data to the web application. Forms
are commonly used for basic interaction with the user. Web forms look like their paper
predecessors and include input elements such as text fields, radio buttons, or check boxes.
Forms are defined in HTML, but require a server-side program to process data. Forms on the
website are most often used for search, registration, ordering products, sending comments,
or contacting a website owner. Figure 4.1 shows example of a simple contact form.

Figure 4.1: Simple contact form with three mandatory fields: subject, e-mail, and message.

Web forms are declared inside a <form> HTML tag that defines method for its submit
and includes form fields. The method is either POST or GET, as defined in the HTTP
standard [19]. Forms fields provide many common graphical user interface elements. These
elements are input, textarea, password, file, select, radio, checkbox, submit, and reset.
However, tree views or combo boxes are not supported. Labels serve as titles connected to
the fields. The following text discusses different approaches to form processing.

4.3.1 Form Implementation

In many web applications, forms are implemented from scratch. Implementation of a form
consists of several steps: defining form, validating user input, handling errors, and processing
data. Defining a form includes coding form and field tags, managing formatting, attaching
labels, and setting up default values. Form validation requires defining mandatory fields,
validating rules, and error messages. Handling errors includes redirecting back to the form,

4.3. DYNAMIC FORMS 43

displaying error message and pre-selecting form values. Submitted data are processed and
sent to an-email or saved into database tables.

As described in the preceding text, there are many operations necessary to create even
a simple form. Manual form processing is time-consuming, non-trivial, and error prone. In
advanced web applications, some or all these steps are automated to speed up development
and prevent errors. Urchin CMS includes an integrated library that is used exactly for these
purposes.

4.3.2 The Form Library

The form library is a tool utilized for automatized form building and processing. The purpose
of the form library is to simplify form definition, validating, and processing. The library does
not cover additional operations, such as saving data or sending e-mails. These operations
must be implemented individually. The library is usable both in the front-end and in the
administration, although it is primarily intended for the front-end. In administration, crud-
based generated forms are more common. Form fields are defined similarly to crud instances
using controls and validators.

4.3.3 Controls

Controls are objects that encapsulate common web form fields existing in HTML, such as
inputs, radios, and check boxes. In addition to rendering these elementary fields, controls
enable many smart features. These features include setting and validating data format,
handling default values, attaching a label, and control rendering as a part of the form.
Input format is determined by the type of the control. Validators are attached to the
controls and used to check the input. All controls keep values filled in if the form’s submit
did not succeed as well as displaying default values by the form definition.

The form library comes with many different types of controls. Basic text controls in-
clude simple input and textarea, other are used for date, time and their variants. Advanced
controls are selection and multi-selection boxes, radios, check boxes. Submit controls allow
sending the form, hidden control enables adding additional parameters, text control is used
to display a custom text inside the form. Security controls are used to prevent duplicated
submit, spam, or CSRF attacks. These controls will be discussed in a separate text. A con-
trol group object creates a group of controls that is displayed as a fieldset. Controls for
uploading files are planned for the future.

4.3.4 Validators

Validators are used to check the user’s input in the form. There are many types of validators
that are attached to controls, each control could have assigned any number of validators.
Common types of validators check if the required fields are filled in, check the input length,
or match user-provided values against a pattern. Regular expression patterns are often
utilized to control date, integer, e-mail, or url format. Special validators are attached to
security controls to help protecting the form.

44 CHAPTER 4. EXTENDING MODULES

4.3.5 Form Processing

The form library is responsible for the complete process of form processing. A variant of
this process is illustrated in figure 4.2. This variant is used for common one-step forms,
such as those in content modules. Form settings and fields are defined in the controller and
available to all views and actions in the process for rendering the form and validating its
values.

Initially, the view with the form is displayed. After submitting the form, the send action
is triggered. In the send action, the form is validated using defined rules. If the validation
succeeds, the form is saved and the user is redirected to the feedback page. If not, the user
is returned back to the view with visible error messages. Saving failure leads to the feedback
page with a return link. Form values are kept after either validation or saving failure to
allow review and resubmit.

Figure 4.2: Form processing diagram with views and actions.

4.3.6 Form Security

The form library provides four complementary methods to secure web forms. The first
method uses a unique token that helps preventing CSRF attacks and duplicated submit of
the form. It works exactly as previously described in the Cross-Site Request Forgery section.
This token-based mechanism is always present in the form, it cannot be detached because
of possible security risks. Remaining three methods are implemented using controls and
validators to prevent spamming and sending the form by robots. These methods are not
mandatory, although strictly recommended.

The first control is simply called antispam. It requests the user to fill in a sum of two
randomly generated integers. The filled number is then compared with the sum that has
been saved in session. The delay control tracks the time elapsed between form displaying
and its sending. If the time is lower than the defined interval, the message is considered
spam. This protection relies on the fact that a human filling in the form with meaningful

4.3. DYNAMIC FORMS 45

form field control validators notes
subject input not empty
mail input not empty, regular expression valid e-mail
type selection n/a e.g. demand or inquiry
message text area not empty

Table 4.2: Standard controls and validators used in the QuickContact module.

data cannot fill it in just few seconds like a robot. Anyway, the delay interval must be
chosen very carefully.

The last type of protection is called honey pot. Honey pot control works as a logical
protection. Basic idea is to enhance the form with auxiliary fields that use common names
but logically do not belong to the form. These additional fields are hidden to the human
visitor. In example, a form has three fields: name, surname, and address. An auxiliary
field could be e.g. e-mail or phone number. The honey pot control then checks if this field
is empty after the form has been submitted. Spamming robots could not distinguish these
extra fields and fill them anyway. However, this method has no effect against a human
spammer.

4.3.7 QuickContact Revisited

QuickContact module makes a good example of using the form library. As already men-
tioned, this module contains a simple contact form with several input fields. Fields are
defined statically, e.g. cannot be changed. The form includes all security controls discussed
in the security section and four standard controls. Table 4.2 lists all standard controls and
attached validators. Form messages are sent to the e-mail and saved to the database.

4.3.8 Forms Revisited

The Forms module is used for creating custom forms in the front-end. Forms, their settings
and fields are managed in the administration. This process is simple, intuitive and does
not require any knowledge of programming. The user can edit form fields, recipients, text
displayed after successful and failed submit, and mail content. Form fields are divided into
logical groups, each with several fields. Each field has custom settings, such as adding options
for radios, setting the field as mandatory, or defining allowed length or range. Incoming
messages are sent via e-mail to defined recipients and logged into the database.

Form fields in the module are based upon form library controls. Each field equals a single
control with one or more attached validators. Some validators are always present (format
validation), use of others depends on the field settings. Table 4.3 displays controls available
for this module with additional information. Grouping of fields using fieldsets is allowed, up
to one level without nesting. Uploading of files is currently not supported, but it is planned
for the future. Each dynamic form by default includes all security controls.

46 CHAPTER 4. EXTENDING MODULES

form field control object settings & validators
short text input required, length
integer input required, range, positive only
decimal input required, range, positive only, decimal places
e-mail input required, add to recipients
url input required
long text text area required, rows
date date required, interval
date & time date time required, interval
time time required, interval
list select required, default option
switch radio options, default option
yes/no radio default option
checkboxes check box options, default, checked 1+
multiple list multi select options, default, rows, selected 1+
displayed text text text content
parameter hidden parameter value
group of fields control group n/a

Table 4.3: Form fields available in the Form module.

4.4 Content Search

The coming text describes searching in the content of a website or a content management
system. The first part of this section discusses two common approaches utilized for search
in small- to medium-size web applications. These two approaches are internal and exter-
nal search methods. Internal methods include entity-based search, content indexing, and
a combination of both. External methods include search engine services and external search
engines. The difference between both types is that internal search is a part of the applica-
tion while external search is usually a third party service or program that is connected via
a public interface. This text discusses typical use and pros and cons of every approach.

The second part describes in detail design of the search facility in Urchin CMS. The
search sub-system in the application is composed of modules Index and Search and utilizes
the content indexing approach to search in the website content and entity-based method to
search in pages. Both parts are focused on search in the website content stored in database,
searching in independent files or multimedia is not covered in this text. There are also other
general search methods not discussed in this work, including inverted indexes or NoSQL
databases.

4.4.1 Entity-Based Search

Entity-based search is the first of three here explained internal search methods. The idea
of this principle is to provide search option for each entity independently on other entities.
The searched entity is typically a single database table or a module with multiple tables.

4.4. CONTENT SEARCH 47

The search is performed directly in content tables without the need for content indexing.
Figure 4.3 displays a simple diagram that illustrates the entity-based search. The picture
includes the querying part with three sample tables. In contrast with the content indexing
method, the indexing part is not present at all.

Figure 4.3: Schema of the entity-based search method.

A search process for this approach iterates all searchable tables and runs a customized
query to search the keyword in each table. Found records are then displayed to the user.
These records are usually first sorted by the entity (e.g. articles first, products last) and
only then sorted by relevance or other criteria. This organization of results is very common
for this approach.

The entity-based approach has many advantages and drawbacks. On one side, this
methods works well with applications that contain many diverse tables or ad-hoc structure.
It is also simple to implement and enough flexible to fit individual module’s requirements.
On the other side, problematic areas are sorting results across entities, limited performance
and presence of additional data not related to search. In example, the MySQL database
currently does not support foreign keys and full-text indexes in the same table. So the
developer must choose between these two often mission-critical options. If the first option
is selected, the search cannot benefit from full-text indexes and always performs a full table
scan.

4.4.2 Content Indexing

Content indexing is more advanced and complex method how to implement search on the
website. It is hugely inspired by data warehousing and business intelligence solutions. Main

48 CHAPTER 4. EXTENDING MODULES

principle of this approach is to divide the search functionality into two parts, content index-
ing and content querying. Both parts share a database table that is not directly connected
to the schema and stores data required for search. Figure 4.4 displays simple schema with
both parts of the process and the indexing table. The indexing part is responsible for index-
ing content from the website into the shared table. The querying part provides the search
itself, e.g. searches for the keyword in the indexed content.

Figure 4.4: Schema of the context indexing search method.

The indexing process runs at a given time using cron or similar scheduling mechanism.
The indexing interval depends on the purpose of the website, e.g. a news server requires
much lower interval than a company presentation. This process also iterates all searchable
tables and then indexes their content. Content indexing includes several steps: tracking
changes, removing obsolete records, updating changed records and parsing new content.
The querying part works similarly to the entity-based method. Instead of searching in
content tables, the indexing table is searched for the keyword.

The content indexing approach has also some drawbacks and many advantages. The
main disadvantage is increased complexity of this approach in comparison with the previous
method. The application must be well-designed from the start to support this approach.
A good example of such architecture is Urchin CMS with its concept of the component axis as
will be discussed later. Other drawback is delay between content change and its indexing.
The most significant advantages are related with the indexing table. The indexing table
stores data in a format perfectly suitable for searching, utilizes full-text indexes for much
better performance, does not contain unrelated data. It also enables trivial retrieval, sorting
and filtering of found records.

4.4. CONTENT SEARCH 49

4.4.3 Combined Search

The content indexing method could be combined with the entity-based approach for various
reasons, e.g. if the content indexing cannot be employed for all tables or to satisfy specific
requirements. There are two options for combining both approaches. The first option just
complements both methods. In example, the content indexing is used for articles and news
while the entity-based search works with pages. The second option is slightly different, it
extends the content indexing method and uses multiple indexing tables for different purposes.
An example in figure 4.5 uses two indexing tables, one table for text content and the other
one for indexing e-shop categories and products.

Figure 4.5: Schema of the combined search method.

4.4.4 Search Engine Service

The most simple and straightforward approach for adding an external search option to the
website is to employ a third-party search engine. Many companies that maintain search
engines on the internet, such as Google [13] or Bing [5], also provide search solutions for
individual websites. This includes free but limited Google Custom Search [14] and Bing
Box [6] for minor projects, or paid Google Site Search [15] for enterprise-level solutions. This
method does not require any advanced programming knowledge. Together with usability
for static websites, this approach provides a relevant solution for minor public projects.
Typical drawbacks of this approach are indexing data by a third party, limited capacity or
advertisement.

In example, implementing Google Custom Search includes three steps: setting up the
engine, adding a search button, and creating a landing page. Setting up the search engine
requires logging into the service and just clicking the create engine button. The engine

50 CHAPTER 4. EXTENDING MODULES

then enables basic settings and further customization. Settings include sites to search, an
important setting "search only these sites", keywords, visual appearance, advertisement and
other options. Two fragments of HTML code are generated after the user has finished
customizing the engine. This first piece of code includes a search box, the second piece is
used for displaying search results on the landing page.

4.4.5 External Search Engine

External search engines are applications that are also used for implementing advanced search
on the website. Opposite to the search engine services, these programs are implemented by
the website developer, not a third party. External search engines index data similarly to the
content indexing approach, although they are not part of the application nor its database.
Communication with the engine is realized via a public interface. Most notable open-source
projects of this type are Apache Lucene [2] along with its variant Apache Solr [3], and
Sphinx [43]. External search engines are highly effective, suitable for high-load projects,
and able to handle any type of text files.

4.4.6 Index Module

The search facility in the Urchin application consists of two modules, Index module and
Search module. Index module directly applies principle described in the general description
of the content indexing approach. Figure 4.6 illustrates all important parts of the indexing
process. The indexing process is triggered by the cron service at a given time once per
defined interval, e.g. content is not indexed immediately after it changes. The administration
also provides a simple interface to manually run the indexing. This interface is by default
available only to the admin user group.

First, all indexable modules are retrieved from the table a_module. After that, all active
components are selected for each retrieved module. Active components are those assigned to
displayed pages on the front-end. The last step is parsing searchable content from elements
to the indexing table entitled a_search_data. Obsolete records are removed from the table,
changed elements are updated, and new elements added. The list of indexable modules is
cached and unchanged elements are not parsed at all to reduce the load of the process.

4.4.7 Search Module

Search module is used for searching the website content within the selected presentation.
This module is by default included in each installation and is composed of a search box and
a result page. The search box is part of the layout and the result page is a system page,
therefore it is always present and not deletable. The search process is simple and combines
the indexing approach with the entity-based method. The former is used for search in the
indexed content and utilizes the full-text index and options. The latter is used for simple
regular expression-based search in page titles.

Figure 4.7 displays all important steps of the search process. First, the user sends a search
request with desired keyword(s). Then the a_page table is searched for titles matching the
keyword and the a_search_data is searched for text content containing the same keyword.

4.4. CONTENT SEARCH 51

Figure 4.6: Sequence diagram for the indexing process.

Both types of records are merged and sent to the result page. Records displayed to the user
are sorted by relevance and include keyword highlighting. All searched terms are logged to
support basic search statistics.

4.4.8 Indexing Table

As discussed before, the indexing table is a data structure used for storing website content
in a form suitable for fast and efficient full-text search. Design of this table is based on the
OLAP 2 approach instead of the OLTP3 approach that is commonly used in transaction-
dependent applications such as content management systems. For this reason, the indexing
table is denormalized and not related to the application’s database schema. It works sim-
ilarly to a dimensional table in a data warehouse. Data in this table are extracted from
other tables by the indexing service and the table itself is used solely for querying its data.

2Online Analytical Processing
3Online Transaction Processing

52 CHAPTER 4. EXTENDING MODULES

Figure 4.7: Sequence diagram for the search process.

The indexing table stores information about records, indexed text, two titles, and
a timestamp. Record information include ids of presentation, module, component, and
element. These ids are used to determine the presentation, join pages to the records, and
quickly lookup for auxiliary data if required. Information about pages is not stored in the
table, pages are joined to the records after the search has been performed. This is a trade-off
between performance and complexity of the indexing table. Indexed text is used for the full-
text search and component and element titles are displayed in search results. The timestamp
is used for detecting changes in elements to reduce the amount of indexed elements.

Chapter 5

User Interface Design

This chapter is devoted to user interface of the administration. The first part describes
visual layout of the administration as well as two specific sections, the page view and the file
view. The second part briefly describes a typical layout of the front-end including important
user interface elements.

5.1 Administration

5.1.1 Login Screen

Figure 5.1: Login screen for the administration.

Login screen is the first page the user sees when accessing Urchin CMS administration. As
displayed in figure 5.1, this page is simple and comprehensive. Login page is divided into
three parts: login form, flags, and information panel. Login form is used for logging into the
administration that requires filling in user’s e-mail and password. Flags enable switching
between Czech and English languages for this page. Information panel warns the user if
he has disabled cookies, disabled JavaScript, or active caps lock. Cookies are mandatory,
logging in with disabled cookies is not possible. JavaScript is required for comfortable use of

53

54 CHAPTER 5. USER INTERFACE DESIGN

several user interface elements, such as interactive trees, tabs, and AJAX-based components.
All fundamental functions in the administration work without JavaScript.

5.1.2 Administration Layout

User interface of the administration is designed to be both highly functional and user-
friendly. The interface is primarily designed for accessing from a desktop with a standard
web browser. Using a mobile device or tablet for administration is also possible. The
administration supports many modern browsers1, including older and mobile versions. Re-
commended resolution for effective use is 1280x800 pixels. Lower resolution makes the user
experience much less comfortable. Layout of the administration is basically composed of
four main panels: top, left, right, and bottom panel. Figure 5.2 illustrates these main panels
using a simple wire-frame.

Figure 5.2: Basic layout and main panels in the administration.

Top panel is composed of main menu, presentation selector, logout link. Main menu
contains links to all sections in the administration. Each section logically groups features
or modules. The first link leads to the page view, the second one to the file view. Other
links lead to sections that contain system and content modules. Table 5.1 lists all sections
together with a short description or examples of included modules. The presentation selector
is used to choose a presentation to work with. In the page view, the user works only with
the selected presentation and its tree of pages. The logout link safely ends user’s session.

1Firefox, Firefox Mobile, Chrome, Internet Explorer 7+, Opera, Opera Mobile

5.1. ADMINISTRATION 55

section short description or modules
structure page view, component and content management
media directory view, image and file management
settings pages, presentations, templates, elements, personal settings
permission users and user groups both for administration and front-end
modules all content modules, e.g. news or forms
lookup read-only lookup tables, e.g. states
tools contact form, caching and search indexing
statistics access log, search log

Table 5.1: Sections in the administration with description and modules.

Both left and right panels are configured according to the active section. The left panel
usually contains a tree view or an additional menu with list of modules. The right panel
contains different views, including page detail or any crud action in a crud-based module.
Important sections or modules and their visual arrangement will be described in the following
sections. The left half of the footer includes information about current system version and
build. The half part shows e-mail of currently logged user. If the development mode is
enabled, the debug panel with detailed debugging data is rendered under the footer.

Figure 5.3: Logical organization of actions in the page view.

56 CHAPTER 5. USER INTERFACE DESIGN

5.1.3 Page View

The page view is the most complex section that is used to manage pages, components and
elements at one place. The left panel in the page view always contains a tree of pages in the
currently selected presentation. The right panel contains either simple presentation overview
or a page’s details with a many additional options. Figure 5.3 displays an HTA2-like logical
diagram with the most important views and actions available in the page view. The most
important parts of the page view will be further discussed. Internally, this section combines
functions of many modules, including application modules Page, Component, and Element,
and content modules that belong to the components on the page.

The most important part of the page view is the interactive tree view with pages. The
tree displays hierarchy of all pages in the selected presentation and visually reflects their
position in the hierarchy. The tree is extended or collapsed by clicking it and also features
a drag-n-drop function to change pages’ position. Page titles are coloured black for active
pages, red for pages in the client zone, and grey for inactive pages. Each page in the
tree includes an on-hover tool-tip that displays several settings or flags. Available flags are
summarized in the list following this text. Figure 5.4 illustrates the page view section with
tree of pages and detail of the active page. The interactive tree view will be implemented
in JavaScript using an open-source library jsTree [25].

• active page, inactive page

• position <number>

• displayed in the menu

• displayed in the sitemap

• redirected page

• with additional parameters

The right panel of the page view is mainly used for managing page content and settings.
The default view is called positions and components and is used to manage components
with content on the page. Figure 5.4 shows detail of a sample page in the right panel
together with hierarchy of pages on the left side. This example displays page detail menu
with additional options, a single component already attached to the page, and a component
assignment panel. This menu contains several options, e.g. page settings, page preview,
page deletion, or adding a new sub-page.

All occupied positions are listed under the menu together with assigned components.
Each position with component includes heading, component menu, and a list of elements.
Component heading contains position name, component name, and a module for this compo-
nent. Component menu offers basic options for managing the component, such as preview,
edit, or remove. The list of elements allows adding, editing, and deleting of elements with
content. From the technical point of view, this list of elements is a specifically configured
element crud instance.

2Hierarchical Task Analysis

5.1. ADMINISTRATION 57

Figure 5.4: Page view with hierarchy of pages and page detail.

Figure 5.5: File view with hierarchy of directories and directory detail.

58 CHAPTER 5. USER INTERFACE DESIGN

Components are assigned to the page using component assignment panel in the bottom.
The user can choose either to create a new component or select an existing component. The
component could be assigned to any free position on the page. Each page has a limited
number of positions according to its template and graphical layout.

5.1.4 File View

The file view is used for managing files and images in the system and is visually similar to
the page view. This view is also composed of two main panels, as displayed in figure 5.5.
The left panel represents hierarchy of directories while the right panel shows the selected
directory’s content. The file management is very basic at the moment. It provides simple
directory listing, file upload, and simple image preview. Advanced file management, filtering,
and better integration with crud components including WYSIWYG editor is planned for
the coming major version.

The file view utilizes the same interactive tree as the page view, with drag-n-drop feature
disabled. This section is used for managing files and images for the website. There are two
types of directories in the tree, system and common directories. System directories are
used for specific purpose, such as galleries or data import. Directories of this type begin
are view-only and their name begins with an underscore. The user can not upload files to
a system directory or its sub-folders.

Opposite to the system directories, common directories allow the user to create new sub-
directories and upload files. New directories can be added up to defined level of nesting. File
upload enables uploading multiple files at once. Both directories and files are not deletable
to prevent errors caused by missing files. File management is independent of the database,
no metadata for files are stored in the database.

5.2 Crud Layout

The crud library is used for managing most modules in sections other than the page and
file views. This library has already been thoroughly presented in section Crud Library, so
this section focuses on short description of its user interface. A common or element crud
instance includes up to four displaying actions: view, detail, edit and add. The view action
displays a list of multiple records, the detail action displays a single record with possible
nested instances, the edit and add actions include form for editing record or adding a new
record.

Figure 5.6 shows an example of the view action that is part of an element crud instance
used for managing news. This concrete instance enables all permission options and contains
five records. The upper part of the view action contains add link and several filters for
filtering records by defined criteria. The middle part displays basic fields of the records
with detail, edit, and add links. Fields are rendered using different components including
an AJAX-based component for direct editing of the name field. Most fields are sortable by
clicking their headings. The lower part includes multiple delete buttons, number of records,
and again the add link. Pagination is not shown due to low number of records.

Figure 5.7 displays an example of the edit action of the same crud instance as described
in the previous text. Each edit form contains links to other available actions in this instance

5.2. CRUD LAYOUT 59

Figure 5.6: The view action of an element crud instance showing sample data.

Figure 5.7: The edit action of an element crud instance displaying a sample record.

60 CHAPTER 5. USER INTERFACE DESIGN

at the top and a save button at the bottom. The middle part contains field labels and
components. Mandatory fields are marked with an asterisk. Components vary according
to the instance configuration, this concrete form uses components for editing simple texts
and values, selecting an image, or WYSIWYG editing of main content. Some components
contain simple tooltips with detailed description. A form used for the add action is similar
to this one, with missing detail and edit buttons. As always, a concrete form’s appearance
depends on its configuration.

Figure 5.8: The view action of a cross crud instance nested inside a common crud instance.

Opposite to common crud instances, a cross or matrix crud instance includes only the
view action. This view action both displays existing settings and allows its update. Fig-
ure 5.8 displays an example of a cross crud instance. This example shows a selected admin-
istrator group and a list of presentations that might be assigned to this group.

5.3 Front-end Layout

This section briefly describes a typical front-end page layout and its basic elements. Visual
appearance of a concrete page on the website strongly depends on its graphical design, so
only common features will be presented. Majority of company and commercial websites
feature traditional layout with a header, menus, content, and a footer. Figure 5.5 displays
a simple wireframe with example of such a layout.

A typical header contains company logo and a short textual description. Contacts,
business hours, or links to social media are often part of the header. Presentation switch is
used for multi-lingual websites and a search box with working search is nearly a must on

5.3. FRONT-END LAYOUT 61

Figure 5.9: Basic layout of a front-end page.

larger websites. The main menu is located under the header and consists of links to most
important top-level pages. The main menu is often horizontal, appearance of other menus
depends on the graphical design. Content part differs page by page. Footer displays basic
information about the company and the website author. This information includes address,
contacts, and links to other websites.

62 CHAPTER 5. USER INTERFACE DESIGN

Chapter 6

Testing of User Interface Design

This chapter summarizes testing of user interface design that has been performed in Novem-
ber 2012 as part of this thesis and subject User Interface Design [49]. This user testing was
focused on user experience when working within the page view. It included several phases,
e.g. screener, interviews, low fidelity testing and high fidelity testing.

6.1 Objective

Objective of this user testing was to improve existing user interface of the page tree view
because several user experience difficulties had been detected in this area during development
and use of the system. The page tree view is the most complex area of the administration
designed for managing daily tasks like working with pages and content. The user testing
took place in winter 2012 with two real users.

The testing process had three independent phases: initial phase with screener and inter-
view, low-fidelity testing with a paper prototype, and high-fidelity testing with a real-world
application. A list of ideas and improvements emerged from the testing. This list was later
analysed and changes incorporated into the application. The tested version of the system
was 2.0 for the low fidelity testing and 2.1 for the high fidelity testing. Corresponding up-
dates have been implemented after the low fidelity testing in version 2.1 and after the whole
testing in version 2.2.

6.2 Target Group

The target group for this project consists of both editors and common users. Editors are
usually skilled in website administration and similar work. Editors typically work in a web
design studio that builds websites for external clients or in a large company that maintains
many own websites. Common user is a person that manages only his own personal or
commercial website. A user of the Urchin CMS is expected to have some basic computer
and internet skills like browsing web pages, using web forms, using e-mail, or working
with a text editor. Basic knowledge of any content management system is also expected.
Participants of the testing are selected using a screener and an interview.

63

64 CHAPTER 6. TESTING OF USER INTERFACE DESIGN

6.3 Test Participants

6.3.1 User A

First participant is a 24-year-old male. He works in a web-design studio as an editor. His
work is to code templates and manage content of various clients’ websites. The aforemen-
tioned company uses its own content management system to develop web presentations and
applications. He has also used another open-source system, Joomla, in her previous work.

6.3.2 User B

Second participant is a 31-year-old male. He works as a teacher in a language school. User B
runs his personal website that offers translation and teaching services. He also manages his
father’s online portfolio. User B uses open-source Wordpress [48] to run both sites. He tried
another free content management system as well.

6.4 Screener

Main purpose of a screener is to classify users and select users suitable for the interview.
This screener consists of few questions connected to the project. Questions in the screener
focus on basic skills required for working with a content management system.

6.4.1 Questions

A. How much are you skilled with a text processor (such as Word or Writer)?

1. unable to use

2. basic: creating and editing documents, simple formatting

3. intermediate: using styles, inserting images, managing tables

4. advanced: using macros and complex formatting, tracking changes

B. How much are you skilled with internet?

1. unable to use

2. basic: web browsing, search, e-mail use

3. intermediate: shopping online, using internet banking, editing content

4. advanced: coding templates, knowing HTML and CSS

5. professional: server- or client-side programming

C. Do you have experience with at least one content management system?

• yes

• no

6.5. INTERVIEW 65

6.4.2 Selection of Participants

As discussed above, test participants are selected using a screener. To qualify himself, the
participant must achieve these results in the screener:

• question A (computer skill): at least basic degree

• question B (internet skill): at least intermediate degree

• question C (content management system knowledge): yes

6.4.3 Screener with User A

The first list shows screener results for User A:

• computer skill: intermediate

• internet skill: advanced

• content management system knowledge: yes

6.4.4 Screener with User B

The second list shows screener results for User B:

• computer skill: intermediate

• internet skill: intermediate

• content management system knowledge: yes

6.5 Interview

Interview is used to get basic information about participants before the testing could begin.
Acquired data are analysed and used to design scenarios for both parts of the testing.

6.5.1 Topics and Questions

Topics and questions include relaxed introduction and all important topics.

A. Use of internet

• How often do you connect?

• What do you search on the internet?

• How do you get links to interesting pages?

66 CHAPTER 6. TESTING OF USER INTERFACE DESIGN

• Do you use tabbed browsing?

• Do you bookmark pages, use download manager, additional plug-ins?

B. Content management systems

• Where do you use a content management system?

• Which system do you use in your job or for your business?

• Have you tried other CMS systems? What is your experience with them?

• Do you use help or documentation if available?

C. Managing pages

• Do you prefer using a tree view or a plain list of pages?

• Do you prefer having pages for different language versions separated?

• Do you favour complexity over simplicity or vice-versa?

D. Managing content (news, articles, texts)

• Do you use a WYSIWYG editor or prepare content outside the system?

• Do you review content before publishing it online?

• Do you like the fact of having news or articles grouped together for easier manipula-
tion?

• What kind of feedback do you expect on an unsuccessful action?

6.5.2 Interview with User A

The following list summarizes information about the first participant, User A.

A. Use of internet

• uses internet almost every day in his job and at home

• reads mostly news, articles about web design, travelling and animals

• uses mail, social networks, chat, watches videos

• searches for links or get them from friends via social networks

• uses 10-15 tabs

• bookmarks many pages, uses web design related plug-ins in job

6.5. INTERVIEW 67

B. Content management systems

• currently uses CMS only in his job

• uses proprietary CMS developed by the company he works in

• had used old version of Joomla in previous work

• experienced many problems with maintenance
• user interface and content editing was kind of awkward and buggy

• searches for help online or asks colleagues if in his work

C. Managing pages

• usually prefers a tree view, but uses also a plain list of pages

• is familiar with a single tree with for all pages in his company’s CMS

• experiences some discomfort with that because many websites have same-named
pages for multiple mutations (leads to editing errors)

• prefers complexity, likes to have most features in the page settings

D. Managing content (news, articles, texts)

• usually prepares content outside a system in HTML

• reviews content on a development server

• this server contains almost up-to-date copy of a live website

• likes grouping of content elements, uses this feature in his job

• expects warning with detailed explanation of a problem

• advanced feedback is better, even with more technical details

6.5.3 Interview with User B

The following list summarizes information about the second participant, User B.

A. Use of internet

• uses internet about every other day

• browses language forums, buys tickets, uses web-mail and Skype

• uses mainly search

• uses up to 5 tabs together

68 CHAPTER 6. TESTING OF USER INTERFACE DESIGN

• has a stable number of bookmarked pages, does not change it much

B. Content management systems

• uses CMS for his and his father’s websites

• uses open-source CMS Wordpress

• has installed Drupal about two years ago

• encounters problems with resource consumption on his web hosting

• does not use help, sometimes searches for online solution

C. Managing pages

• uses only a plain list of pages

• is content with this situation, manages only few pages
• does not have a tree view in his system, but would like to try it

• prefers simplicity over complexity, all actions he uses should be in page settings

D. Managing content (news, articles, texts)

• uses built-in WYSIWYG editor for formatting and adding images

• reviews content just after publishing it on live site

• likes the idea of having page preview in administration

• likes the idea of grouping news or articles together for simpler managing

• expects message with explanation

• dislikes if anything fails and he is not informed what happened

6.5.4 Summary of Information

Analysis of user interface design of a page tree view is based upon interviews and summary
of information.

• different web presentations have separated tree view

• tree view is the default method how to manage pages

• content and page settings are managed mostly in the tree view

• content preview is provided

• user can choose between WYSIWYG editor and HTML source editing

• components are used for grouping elements and assigning them to the page

• expressive and detailed feedback is provided

6.6. USER SCENARIOS 69

6.6 User Scenarios

User scenarios are used for testing and cover operations that users perform in the content
management system administration. Prerequisite for each scenario is that the user is logged
in the administration and he has been shortly instructed about basic concepts of the system.
The basic concepts include working presentations and pages, managing content using com-
ponents and elements and brief introduction to user permission. The testing environment
already includes several web pages, such as welcome page and services.

Scenarios cover four fundamental operations commonly performed in the page tree view.
All operations are listed after this introductory text together with detailed description of
each operation. However, during the testing participants are NOT given these detailed
instructions, only short description of each task. If the participant had followed the in-
structions step-by-step, there would be nothing to test. Instead of that, the scenarios are
designed to record user experience and find potential problems with usability in the page
view.

A. Add a new page for articles to English presentation

• change presentation if necessary

• choose parent page in a tree view if adding a sub-page

• click on new page link

• fill in the form with page information

• click on insert button

• fix mistakes if validation fails and try again

B. Create component for articles and assign that to the new page (added in scenario A).

• change presentation if necessary

• click on new component link

• select Articles module and fill in the form with component information

• click on insert button

• fix mistakes if validation fails and try again

• choose page in a tree view

• select free position and the newly created component

• click on assign button

70 CHAPTER 6. TESTING OF USER INTERFACE DESIGN

C. Add new article to the new component (assigned in scenario B).

• change presentation if necessary

• choose page in a tree view

• navigate to the previously assigned component

• click on new record link

• fill in the form with article information

• click on insert button

• fix mistakes if validation fails and try again

• click on preview record link to check new article online

D. Edit existing article (created in scenario C).

• change presentation if necessary

• choose page in a tree view

• navigate to the previously assigned component and find the newly added article

• click on record editing link

• change information in the form as desired

• click on update button

• fix mistakes if validation fails and try again

• click on preview record link to check updated article online

6.7 Low Fidelity Testing

6.7.1 Testing Overview

Low fidelity testing focuses on testing with real users. Each testing session is an interview
between a tester and a participant. The tester serves as a simple computer that manages user
interface for the tested user. A paper mock-up is used for simulation of a real application
and its features. The interface of the paper prototype resembles a real application, but
only actions and elements important for the testing are provided. Other parts of the user
interface are omitted. Participants test the prototype without previously knowing the real
application.

6.7. LOW FIDELITY TESTING 71

6.7.2 Paper Prototype

Paper mock-up serves as a low fidelity prototype for further user testing. The paper pro-
totype provides basic views, user actions and feedback for testing scenarios. Several types
of paper components exist, for example tree view, menus, forms, page content and form
feedback. Figure 6.1 displays all paper components used in this type of testing, including
menus, main screens, basic user interface elements, and feedback messages.

Figure 6.1: Paper mock-up overview with different types of paper components.

6.7.3 Goals and Scenarios

The goal of the low fidelity testing is to find out whether the user interface is well designed
and suitable for common users. There are four scenarios that will be used for testing that
have been already described and are displayed in the following list. All scenarios are linked
together. User works with a page, a component, or an article created in a previous scenario.

1. Add a new page for articles to English presentation.

2. Create component for articles and assign that to the new page.

3. Add new article to the new component.

4. Edit existing article.

72 CHAPTER 6. TESTING OF USER INTERFACE DESIGN

6.7.4 Testing Plan

• start with relaxed questions and short discussion about the initial interview

• prepare paper prototype and all tools

• tell participant basic information how the testing works

• ask for permission for recording and making photos

• explain basic features of the tested application

• test all scenarios

• discuss and review user experience

6.7.5 Testing with User B

First participant of a low fidelity testing was User B. Before the testing, meal was served
and the session began with relaxed discussion about the testing and the initial interview.
User B was a bit tired and curious about what to expect, so he was shortly instructed about
the testing. How long does it circa takes, what is being tested, how does it work and what
is the output. Immediately after that he was told about the tested application, as it differs
from his previously used content management systems. With some real-world examples,
User B had no bigger problems understanding how the system works. All basic concepts
such as pages, components and elements were discussed.

After this introduction, the user was shown and described in detail a paper mock-up and
told about the roles of tester and user. User was asked and agreed with making photos and
audio recording of the session. Due to a poor quality of the recording, only the camera was
used during the session to make few photos. Then he was asked to think and speak aloud
during the testing and ask for explanation or help if necessary. The scenarios were tested
without showing their description to the user. Instead of giving detailed instructions to the
use, he was shown scenarios and briefly told what to do.

The first scenario was adding a new empty page to the English presentation. Before
starting, User B was curious about all links and features available on the prototype, so he
was shortly told. Selecting a correct presentation went without any problem, same with
adding a new page using the add page form. The user used help available next to the form
inputs, more from curiosity than from not knowing what to do. Form validation was not
triggered as the provided input did not contain any errors. Figure 6.2 shows User B after
adding a new page.

Second task was to add a component to the newly created page. The user had some
problems finding a new component link on the page. After the while he found the link in
the presentation menu. But he expected that in the page menu, e.g. on the same place
where he can select existing component. As with adding a page, the user did not have
problems with filling in the form and adding a new component after he found the required
link. After adding the new component, he had to assign it to the page. Third scenario was
to add new article to the newly added page and component. This time, the operation was
completely successful. For the last scenario, editing the new article, the user was asked to

6.8. TESTING WITH USER A 73

Figure 6.2: User B added a new page for articles.

work completely without any instructions. The only mistake he did was that he forgot to
use a preview button for to check changes in the article online.

After the testing of scenarios, the whole testing process has been shortly discussed. The
user felt comfortable with the application layout, the tree view and forms, their help and
validation. He thought that component handling could be implemented better. He was
also very curious about other features and functions he had seen in the prototype. For this
reason, several other features were briefly described to User B after the testing was finished.
Beside this output, several tips and notes for the next session were taken. The whole session
took about 80 minutes, not counting the dinner and discussion on other topics.

6.8 Testing with User A

Low fidelity testing with User A took part few days after the first testing. User A works as
an editor, so the things worked slightly better than with User A. This session took place in
the same place as the previous testing with User B. Again, the user was first asked about the
initial interview. Then he was instructed how the testing and the paper prototype works.
He knows what the user testing involves, so this went really quickly as well as introduction

74 CHAPTER 6. TESTING OF USER INTERFACE DESIGN

of the system and its features. User A was also asked about taking photos of the testing,
thinking aloud and asking if necessary.

This time, a little different way of testing scenarios was chosen. User A is more expe-
rienced user of a content management system, so there was space for experimenting. He was
only told basic instructions for each scenario without further brief or detailed suggestions.
This tactics worked very well, as described in the coming text. All scenarios were exactly
the same as in the previous testing.

Figure 6.3: User A after adding a new component.

During the first scenario, User A did not encountered any bigger problem with the user
interface. His interaction with the page tree view as well as with menus and forms was clear
and straightforward. The user only added page under another page instead of directly to
the presentation. This was his intention, not a consequence of a flawed interface design. The
second task was again adding a new component. Unlike User B, User A had no difficulty
finding a new component button. Even though, he suggested that would be great to add
and assign component together in one action. And this action should be in the page menu,
not the presentation menu. Figure 6.3 shows User A after adding a new component.

The last two scenarios with adding and editing an article went very well without any
problems. During the testing, user was very pleased with forms and action feedback, but

6.8. TESTING WITH USER A 75

a little concerned with management of components. Other features were also discussed in
detail, such as layout of the user interface, menus and links. These follow common standards
and work without problems in the eyes of the participant.

6.8.1 Testing Summary

These features of the user interface worked very well:

• global layout of the administration interface and menus

• main concept of presentations, pages, components and elements

• page tree view as an effective tool for page management

• brief and clear names of links and actions

• forms, their validation and help next to inputs

• straightforward and clear feedback messages

• preview feature where user can check edited content online

These features might improve:

• adding page to first versus another level could be better distinguished

• hint about the preview would be useful so the user does not forget using that

These features did not work very well:

• adding new component only from the presentation menu is a bad option

• assigning new component after its creation is confusing

• two actions for component creation and assigning should merge

Most features of the user interface worked very well. There were serious user experience
problems with creation and assigning of new components. The low fidelity testing confirmed
these problems, as they have been already detected before. The next part of the testing
is high fidelity testing that will be performed using the existing application (with some
advanced features possibly disabled). Anyway, more links, features and form options will
be available. Let’s see how the user experience changes with the real application.

76 CHAPTER 6. TESTING OF USER INTERFACE DESIGN

6.9 High Fidelity Testing

6.9.1 Testing overview

High fidelity testing is a type of testing with real users that usually follows the low fidelity
testing. In this concrete testing, a high fidelity prototype installed on a testing machine is
used. In comparison with the paper prototype, this application has enabled all features, not
only functions mandatory for the testing. The testing application uses a simple database
for a small company website. Before this phase of testing, all participants have seen only
a paper prototype, not the tested application itself. The tested version is 2.1 that includes
many updates of the user interface since the low fidelity testing.

6.9.2 Goals and Scenarios

The main goal of the high fidelity testing is to again test if the page tree view is well designed
and to gather ideas for improvements of its user interface. In contrast with the previous low
fidelity testing, a real application instead of a simple paper prototype is used. All testing
scenarios for high fidelity testing are exactly same as in the previous phase. See section 6.6
for details of the scenarios.

6.9.3 Preparations

First, meeting times for testing were appointed. This time, the testing was planned to
take part at the author’s place. Then the testing application was prepared from the actual
version of the system, database was purged and new content prepared. Several copies of the
testing database were made, one for author and two for both participants. After setting up
the application, the author has tested all scenarios to prove that everything works correctly.
A table with a laptop, a lamp, drinking water, and a comfortable chair was prepared directly
before the testing session. Figure 6.4 shows testing place after setting it up.

6.9.4 Testing Plan

• start with off-topic discussion and shortly review previous testing

• prepare laptop with testing environment

• tell participant differences to the low fidelity testing

• repeat basic features of the tested system

• inform user that real application is used (with many other features)

• test all scenarios

• discuss and review user experience

6.9. HIGH FIDELITY TESTING 77

Figure 6.4: Place prepared for the high fidelity testing.

6.9.5 Testing with User B

The first testing session with User B took place at author’s place. Before the testing,
everything was well prepared as described in section 6.9.3. First step of this session was
short discussion about differences from the previous low fidelity testing. User B was told
that all scenarios remain same as before and a real application is used for the testing. The
fact that a real application has many more features than a simple paper prototype was also
mentioned. Then few instructions about the testing laptop and environment were given.
He was also asked if he wants to use a mouse or a touch pad for interaction with the tested
application. User B tried briefly the touch-pad and then selected that.

As before the low fidelity testing, User B was given a short list of instructions for each
scenarios. Knowing the paper prototype and the system philosophy, everything went much
faster and without significant problems. Several ideas emerged from the short discussion
after the testing of all scenarios. A little problem with user interface occurred, as User B
had some difficulty differing the preview and detail icon when working with his article in
the last two scenarios.

78 CHAPTER 6. TESTING OF USER INTERFACE DESIGN

Icon for preview is a magnifying glass while icon for element detail is an eye. During
the testing, he also denoted that presentation overview is empty and there should be some
information instead of empty space. This is correct, the reason is the testing application
had no favourite links or pending elements that would be displayed in this place. User B
was really pleased after creating a new component because the user interface for this action
has improved significantly. A large amount of interactive elements (icons, links) in the page
detail imposed no problem for the user. This session took around 55 minutes.

6.9.6 Testing with User A

The second testing session with User A was arranged two days after the testing with User B.
Everything was carefully prepared and then the session started. User A is more advanced
user of content management systems, so the interview before giving user the testing scenarios
was quite short. User A decided to directly go and work out the scenarios. He also preferred
to use a mouse instead of a touch pad.

User A was given the same instructions for all scenarios as User B. He went through
the testing smoothly and in addition tried some other features of the system beyond the
given instructions. After the testing, various topics connected to the user interface were
discussed. User A really liked the global layout of the administration, page tree flexibility
and various tool tips and feedback messages throughout the administration. He denoted
that adding a new component is slightly better than before. Now this operation takes only
one step instead of three steps like before the improvement. He suggested few other ideas:
more descriptive tool tips next to form fields, hiding other positions when editing a record
(e.g. article) or disabling adding a component to redirected page as this component will
never be displayed in the front-end. User A also briefly tested the work-flow system when
working with articles. This session took around 45 minutes.

6.9.7 Evaluation of Testing

These features of the user interface worked very well:

• main concept of presentations, pages, components and elements

• layout of the user interface, menus and page tree view

• brief and clear links, buttons and icons

• forms, descriptive validation and feedback messages

• creating and assigning a new component in comparison with previous state

• helpful tool-tips both in the page tree and in forms

6.9. HIGH FIDELITY TESTING 79

Some ideas and possible improvements:

• better icons for detail and online preview

• hide parts of the interface that are not necessary for the current action

• more descriptive tool-tips next to form fields

User experience in the high fidelity testing is slightly better than the results of the previous
low fidelity testing. All tested features of the user interface worked well, although there are
some details that would be improved in version 2.2 of the Urchin system.

80 CHAPTER 6. TESTING OF USER INTERFACE DESIGN

Chapter 7

Conclusion

This short chapter discusses fulfilment of thesis objectives, future plans and ideas for deve-
lopment, possible new modules and licensing of this work.

7.1 Achieved Objectives

Following its main objective, this work successfully proposed architecture and design of
a content management system. All fundamental concepts have been discussed in general
and for the Urchin application that implements these concepts. Most important topics desc-
ribed in this text include database design, application architecture, pages and components,
permission system, search, and user interface. Many solutions have been compared with
different approaches and possibilities. In addition, user testing has been performed with
intention to improve user experience with the most important part of the administration,
the page tree view.

7.2 Future Plans

7.2.1 Content Versions

Content versioning is a feature that enables create and manage historical versions of website
content. Old versions of the content are archived and can be restored at any time. This
feature is particularly useful for tracking changes in text content or making e.g. promotional
versions of products while keeping their standard versions. Content versioning works as an
addition to the traditional content management. The design proposed for future versions
of Urchin CMS allows managing versions on the element level, e.g. technically any element
could have multiple versions. In fact, versioning will be limited to text-oriented modules
and forms as an addition to the existing content management and content work-flow.

7.2.2 File Management

This part of the administration will be completely upgraded beyond simple solution pre-
sented in this work. Existing file management provides basic features, but is far from being

81

82 CHAPTER 7. CONCLUSION

advanced and user-friendly. Now both file manager and components for selecting files offer
a simple list of files with basic information, multi-upload of files. A first part of updates
for the file manager will enable filtering and ordering files by multiple fields, image preview
with thumbnails, better image resizing and possibly a trash bin. The second part includes
implementing two WYSIWYG plug-ins for a user-friendly selection of files instead of man-
ually defined path to the file. The objective here is to unify file and image selection across
the administration.

7.2.3 Client Zone

The purpose of the client zone is to enable better interaction with website visitors and to
provide solid ground for further improvements. The basic design of the client zone includes
managing front-end users, user group, registration, login, user preferences, and logging user
actions. Several features have been already implemented, such as administration of front-
end user and limiting page access to registered users only. Remaining features and modules
will be added in 2013, most notably the Registration and Login content modules. Many
possible future areas of development will also require or benefit from the client zone, e.g.
forum, newsletters or e-commerce features.

7.2.4 Technical Improvements

The most important change in this area is to replace the currently used tree model in the
page tree view for another one. Current solution uses a simple parent-based solution where
each node except the top-level has its parent. This tree is retrieved by a single database
query, assembled in the application and cached. The future solution will use an adjacency
list model. This model separates data and their relations for more efficient manipulation.
Instead of having everything in a single table, one M:N table stores page relations and
another table stores page data. Both described models are in detail described in [56], on
pages 36-53.

Other technical improvements include separate database layer for PostgreSQL database
and extending caching to content modules with text content, such as Content or Articles.
Caching for content modules would require an effective solution for handling time depen-
dencies. In example, cached records should be purged when the element begins to display
or expires based on its validity interval set up in the administration.

7.3 New Modules

Several new content modules are planned for future versions of Urchin CMS. New modules
will provide basic functions for a specified area while staying highly flexible and adaptable
to concrete project’s requirements. This approach has been already successfully applied to
existing modules and helps preventing unnecessary complexity of the modules. Many new
modules fall into the linked content modules category, the difference is that components of
these modules are attached to elements instead of assigned to positions on a page. The fol-
lowing list shows examples of areas covered in future modules along with short a description.
Ideas for linkable modules are marked with a star.

7.4. LICENSING 83

• login, registration, client preferences for the client zone

• a simple forum with topics, categories, and comments

• a list of most read articles, news, forum topics

• a simple catalogue of items with categories and prices

• comments, voting under an element (e.g. article or product) *

• map with coordinates and description of an element (e.g. item or shop) *

7.4 Licensing

This work is licensed under the Creative Commons BY-SA 3.0 license [7]. This type of license
allows distribution of this work under the same or similar license, even for commercial use.
Parts of this work licensed under this license include the text itself, all appendices, and all
files available on the attached disc. This license also requires citing the author if his work
is referenced.

84 CHAPTER 7. CONCLUSION

Bibliography

[1] ADOdb Database Abstraction Library for PHP [online]. 2013. [cit. 25. 02. 2013]. Avail-
able at: <http://adodb.sourceforge.net/>.

[2] Apache Lucene [online]. 2013. [cit. 11. 03. 2013]. Available at: <http://lucene.
apache.org/core/>.

[3] Apache Solr [online]. 2013. [cit. 11. 03. 2013]. Available at: <http://lucene.apache.
org/solr/>.

[4] BBCode.org [online]. 2013. [cit. 25. 02. 2013]. Available at: <http://www.bbcode.
org/>.

[5] Bing [online]. 2013. [cit. 09. 03. 2013]. Available at: <http://www.bing.com/>.

[6] Bing Box [online]. 2013. [cit. 09. 03. 2013]. Available at: <http://www.microsoft.
com/netherlands/Web/solutions/bing-box.aspx>.

[7] Creative Commons - Attribution-ShareAlike 3.0 Unported - CC BY-SA 3.0 [online].
2013. [cit. 04. 04. 2013]. Available at: <http://creativecommons.org/licenses/
by-sa/3.0/>.

[8] Cascading Style Sheets [online]. 2012. [cit. 02. 12. 2012]. Available at: <http://www.
w3.org/Style/CSS/>.

[9] Martin Fowler - P of EAA: Class Table Inheritance [online]. 2013. [cit. 24. 02. 2013].
Available at: <http://martinfowler.com/eaaCatalog/classTableInheritance.
html>.

[10] Drupal - Open Source CMS [online]. 2012. [cit. 02. 12. 2012]. Available at: <http:
//drupal.org/>.

[11] Information Technology Laboratory: FIPS PUB 180-4, 03 2012. Secure Hash Standard.

[12] GNU Project - gettext [online]. 2013. [cit. 17. 02. 2013]. Available at: <http://www.
gnu.org/software/gettext/>.

[13] Google - About Google [online]. 2013. [cit. 09. 03. 2013]. Available at: <http://www.
google.com/about/>.

[14] Custom Search Engine [online]. 2013. [cit. 09. 03. 2013]. Available at: <http://www.
google.com/cse/>.

85

http://adodb.sourceforge.net/
http://lucene.apache.org/core/
http://lucene.apache.org/core/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://www.bbcode.org/
http://www.bbcode.org/
http://www.bing.com/
http://www.microsoft.com/netherlands/Web/solutions/bing-box.aspx
http://www.microsoft.com/netherlands/Web/solutions/bing-box.aspx
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://www.w3.org/Style/CSS/
http://www.w3.org/Style/CSS/
http://martinfowler.com/eaaCatalog/classTableInheritance.html
http://martinfowler.com/eaaCatalog/classTableInheritance.html
http://drupal.org/
http://drupal.org/
http://www.gnu.org/software/gettext/
http://www.gnu.org/software/gettext/
http://www.google.com/about/
http://www.google.com/about/
http://www.google.com/cse/
http://www.google.com/cse/

86 BIBLIOGRAPHY

[15] Google Enterprise Search [online]. 2013. [cit. 09. 03. 2013]. Available at: <http://www.
google.com/enterprise/search/products_gss.html>.

[16] HTML 4.01 Specification [online]. 1999. [cit. 02. 12. 2012]. Available at: <http://www.
w3.org/TR/html401/>.

[17] HTML Purifier [online]. 2013. [cit. 25. 02. 2013]. Available at: <http://htmlpurifier.
org/>.

[18] HTTP - Hypertext Transfer Protocol Overview [online]. 2013. [cit. 12. 01. 2013]. Avail-
able at: <http://www.w3.org/Protocols/>.

[19] HTTP/1.1: Method Definitions [online]. 2013. [cit. 16. 03. 2013]. Available at: <http:
//www.w3.org/Protocols/rfc2616/rfc2616-sec9.html>.

[20] Hibernate - JBoss Community [online]. 2013. [cit. 06. 02. 2013]. Available at: <http:
//www.hibernate.org/>.

[21] MySQL 5.6 Reference Manual - 14.2 The InnoDB Storage Engine [online]. 2013.
[cit. 08. 01. 2012]. Available at: <http://dev.mysql.com/doc/refman/5.6/en/
innodb-storage-engine.html>.

[22] JavaServer Faces Technology [online]. 2013. [cit. 12. 01. 2013]. Available at: <http:
//www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html>.

[23] Java EE 6 - Interface ServletContext [online]. 2013. [cit. 12. 01. 2013]. Available
at: <http://docs.oracle.com/javaee/6/api/javax/servlet/ServletContext.
html>.

[24] Joomla! [online]. 2012. [cit. 02. 12. 2012]. Available at: <http://www.joomla.org/>.

[25] jsTree [online]. 2012. [cit. 20. 03. 2013]. Available at: <http://www.jstree.com/>.

[26] Martin Fowler - GUI Architectures [online]. 2013. [cit. 10. 01. 2013]. Available at:
<http://martinfowler.com/eaaDev/uiArchs.html>.

[27] About NCSA Mosaic [online]. 2012. [cit. 02. 12. 2012]. Available at: <http://www.
ncsa.illinois.edu/Projects/mosaic.html>.

[28] MySQL :: The world’s most popular open source database [online]. 2012.
[cit. 26. 12. 2012]. Available at: <http://www.mysql.com/>.

[29] OWASP - Top 10 2010 [online]. 2013. [cit. 25. 02. 2013]. Available at: <https://www.
owasp.org/index.php/Top_10_2010-Main>.

[30] OWASP - Cross-Site Scripting [online]. 2011. [cit. 26. 02. 2013]. Available at: <https:
//www.owasp.org/index.php/Cross-site_Scripting_(XSS)>.

[31] OWASP - SQL Injection [online]. 2012. [cit. 26. 02. 2013]. Available at: <https://
www.owasp.org/index.php/SQL_Injection>.

http://www.google.com/enterprise/search/products_gss.html
http://www.google.com/enterprise/search/products_gss.html
http://www.w3.org/TR/html401/
http://www.w3.org/TR/html401/
http://htmlpurifier.org/
http://htmlpurifier.org/
http://www.w3.org/Protocols/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://www.hibernate.org/
http://www.hibernate.org/
http://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://docs.oracle.com/javaee/6/api/javax/servlet/ServletContext.html
http://docs.oracle.com/javaee/6/api/javax/servlet/ServletContext.html
http://www.joomla.org/
http://www.jstree.com/
http://martinfowler.com/eaaDev/uiArchs.html
http://www.ncsa.illinois.edu/Projects/mosaic.html
http://www.ncsa.illinois.edu/Projects/mosaic.html
http://www.mysql.com/
https://www.owasp.org/index.php/Top_10_2010-Main
https://www.owasp.org/index.php/Top_10_2010-Main
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/SQL_Injection

BIBLIOGRAPHY 87

[32] OWASP - Top 10 2013 [online]. 2013. [cit. 25. 02. 2013]. Available at: <https://www.
owasp.org/index.php/Top_10_2013-T10>.

[33] OWASP - Cross-Site Request Forgery [online]. 2013. [cit. 26. 02. 2013]. Available at:
<https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)>.

[34] About Adobe PDF [online]. 2013. [cit. 10. 01. 2013]. Available at: <http://www.adobe.
com/products/acrobat/adobepdf.html>.

[35] PHP: Hypertext Preprocessor [online]. 2012. [cit. 26. 12. 2012]. Available at: <http:
//php.net/>.

[36] PHP: Alternative syntax for control structures [online]. 2012. [cit. 17. 02. 2013]. Available
at: <http://www.php.net/alternative_syntax>.

[37] Worx International Inc. - PHPMailer [online]. 2013. [cit. 12. 01. 2013]. Available at:
<http://phpmailer.worxware.com/index.php>.

[38] PHP:MySQLi - Manual [online]. 2013. [cit. 25. 02. 2013]. Available at: <http://php.
net/manual/en/book.mysqli.php>.

[39] PHP:PDO - Manual [online]. 2013. [cit. 25. 02. 2013]. Available at: <http://php.net/
manual/en/book.pdo.php>.

[40] PostgreSQL: The world’s most advanced open source database [online]. 2012.
[cit. 26. 12. 2012]. Available at: <http://www.postgresql.org/>.

[41] Qt Project - Internationalization with Qt [online]. 2013. [cit. 17. 02. 2013]. Available at:
<http://qt-project.org/doc/qt-4.8/internationalization.html>.

[42] RSS 2.0 Specification (version 2.0.11) [online]. 2002. [cit. 14. 03. 2013]. Available at:
<http://www.rssboard.org/rss-specification>.

[43] Sphinx - Open Source Search Server [online]. 2013. [cit. 11. 03. 2013]. Available at:
<http://sphinxsearch.com/>.

[44] TinyMCE - Home [online]. 2013. [cit. 25. 02. 2013]. Available at: <http://www.
tinymce.com/>.

[45] Trygve M. H. Reenskaug, personal page [online]. 2013. [cit. 10. 01. 2013]. Available at:
<http://heim.ifi.uio.no/~trygver/>.

[46] UTF-8 and Unicode Standards [online]. 2013. [cit. 17. 02. 2013]. Available at: <http:
//www.utf-8.com/>.

[47] Content management system [online]. 2012. [cit. 02. 12. 2012]. Available at: <http:
//en.wikipedia.org/wiki/Content_management_system>.

[48] WordPress - Blog Tool, Publishing Platform, and CMS [online]. 2012. [cit. 28. 03. 2013].
Available at: <http://wordpress.org/>.

https://www.owasp.org/index.php/Top_10_2013-T10
https://www.owasp.org/index.php/Top_10_2013-T10
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
http://www.adobe.com/products/acrobat/adobepdf.html
http://www.adobe.com/products/acrobat/adobepdf.html
http://php.net/
http://php.net/
http://www.php.net/alternative_syntax
http://phpmailer.worxware.com/index.php
http://php.net/manual/en/book.mysqli.php
http://php.net/manual/en/book.mysqli.php
http://php.net/manual/en/book.pdo.php
http://php.net/manual/en/book.pdo.php
http://www.postgresql.org/
http://qt-project.org/doc/qt-4.8/internationalization.html
http://www.rssboard.org/rss-specification
http://sphinxsearch.com/
http://www.tinymce.com/
http://www.tinymce.com/
http://heim.ifi.uio.no/~trygver/
http://www.utf-8.com/
http://www.utf-8.com/
http://en.wikipedia.org/wiki/Content_management_system
http://en.wikipedia.org/wiki/Content_management_system
http://wordpress.org/

88 BIBLIOGRAPHY

[49] XD39NUR - annotation (in Czech) [online]. 2013. [cit. 20. 03. 2013]. Available at:
<http://www.fel.cvut.cz/education/bk/predmety/16/32/p1632706.html>.

[50] XHTML 1.0: The Extensible HyperText Markup Language (Second Edition) [online].
2012. [cit. 26. 12. 2012]. Available at: <http://www.w3.org/TR/xhtml1/>.

[51] Extensible Markup Language (XML) [online]. 2013. [cit. 10. 01. 2013]. Available at:
<http://www.w3.org/XML/>.

[52] JQuery: The Write Less, Do More, JavaScript Library [online]. 2012. [cit. 26. 12. 2012].
Available at: <http://jquery.com/>.

[53] BUSCHMANN, R. R. H. S. P. S. M. F. M. Pattern-Oriented Software Architecture Vol
1: A System of Patterns. 1. John Wiley and Sons, 1996. ISBN 978-0471958697.

[54] FOWLER, M. Patterns of Enterprise Application Architecture. Addison-Wesley, 2002.
ISBN 978-0321127426.

[55] KARAGKASIDIS, A. Developing GUI Applications: Architectural Patterns Revis-
ited. In EuroPLoP 2008: 13th Annual European Conference on Pattern Languages of
Programming, july 2008.

[56] KARWIN, B. SQL Antipatterns: Avoiding the Pitfalls of Database Programming.
Raleigh, North Carolina, 2010. ISBN 978-1934356555.

http://www.fel.cvut.cz/education/bk/predmety/16/32/p1632706.html
http://www.w3.org/TR/xhtml1/
http://www.w3.org/XML/
http://jquery.com/

Appendix A

List of Abbreviations

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

CMS Content Management System

CRM Customer Relationship Management

CRUD Create, Read, Update, Delete

CSRF Cross-Site Request Forgery

CSS Cascading Style Sheets

GUI Graphical User Interface

HMVC Hierarchical Model-View-Controller

HTML HyperText Mark-up Language

HTA Hierarchical Task Analysis

HTTP Hypertext Transfer Protocol

Java EE Java Platform, Enterprise Edition

LAMP Linux Apache MySQL PHP

MVC Model-View-Controller

OLAP Online Analytical Processing

OLTP Online Transaction Processing

ORM Object-Relational Mapping

OWASP The Open Web Application Security Project

PAC Presentation-Abstraction-Control

89

90 APPENDIX A. LIST OF ABBREVIATIONS

PDF Portable Document Format

PDO PHP Data Object

PHP PHP: Hypertext Preprocessor

RSS Rich Site Summary

SEO Search Engine Optimization

SQL Structured Query Language

SSL Secure Sockets Layer

UCMS Urchin Content Management System

URL Uniform Resource Locator

WAMP Windows Apache MySQL PHP

WCF Web Component Framework

WCFS Web Component Framework: Simple

WYSIWYG What You See Is What You Get

WWW World Wide Web

XML eXtensible Mark-up Language

XSLT eXtensible Stylesheet Language Transformations

XSS Cross-Site Scripting

Appendix B

List of Terms

B.1 Architecture

Common Crud A crud-based controller is used to manage records in a single main data-
base table in the administration. The common crud employs components, validators
and similar objects to work with records.

Component (crud) An object in the crud library that encapsulates form field and is
responsible for its visual appearance and formatting.

Converter An object used for converting values to strings and strings to values.

The Crud Library A built-in library that enables rapid and flexible development of the
user interface in the administration. Common settings and elements are defined instead
of programming.

Decorator An object that visually enhances displayed data independently of the compo-
nent.

Element Crud A special variant of the common crud used to work with elements.

Entry A container used in the crud library that holds a single component and validators.

Filter A simple object used for filtering records in the crud view.

Front Controller The single access part to the application that routes incoming requests
to controllers and is also responsible for access control and localization.

Hierarchical Model-View-Controller An extended version of the MVC pattern An app-
lication following this architectural pattern consists of multiple hierarchically organised
MVC triplets.

Model-View-Controller An architectural pattern used to divide a web application into
three separated layers, the model, the view, and the controller part.

Validator (crud) An object used for validating user input inside the entry.

91

92 APPENDIX B. LIST OF TERMS

B.2 Core Features and Modules

Action A basic operation in the administration. Actions employ options to control user
access.

Application Module A type of module that is responsible for managing basic structure
of the website or cooperate with element modules. Application modules are used both
in the front-end and administration.

Component (concept) A group of elements managed together as a single item. Compo-
nent is derived from a module and assigned to the concrete position on a page. Each
component might be assigned to multiple pages, even across the presentations.

The Component Axis A basic concept dealing with the horizontal partitioning of the
website. The website content is divided into module-based components that are as-
signed to the pages.

Content A common term that generalizes both static and dynamic features of a website.
Content could be e.g. text, articles, forms, images, or multimedia.

Element A basic low-level unit of a website. An element corresponds to a basic low-level
unit of content, such as a single article, a web form, or a simple static text.

Element Module A type of module that is employed to manage and deliver content to
the front-end. Element modules work with special database records called elements.

Linkable Module A special type of module. A component derived from a linkable module
is assigned to another element instead of to the position.

Module A software package that extends the Urchin application. Modules usually consist
of database tables, classes, templates and a default set of permission. Modules serve
as templates for creating components.

Option An access right assigned to the module and used to check access to actions. The set
of options id fixed, available options are: view, detail, edit, add, delete, and approve.

Page A basic part of the website. Each page has assigned a single template with fixed
number of positions.

The Page Axis A basic concept dealing with the vertical structuring of the website. The
website is composed of presentations, each presentation has a tree of pages with con-
tent.

Position A slot on a page used for assigning components with diverse content.

Presentation A top-level part of a website. Each presentation has assigned language and
consists of multiple pages arranged in a tree structure.

System Module A type of module that is used in the administration to handle internal
settings and tasks.

B.3. EXTENDING MODULES 93

System Page A special type of page that ensures fundamental functions and is always
present in the presentation.

Template A structure that defines layout of a page. A template is closely connected to
the graphical design of the website and has assigned a fixed number of positions.

Website A set of related pages with content accessible via Internet or another network.
A typical website is divided into one or multiple presentations.

B.3 Extending Modules

Control An object in the form library that encapsulates form field and handles its valida-
tion, formatting and additional settings.

Form Common element of the user interface used for gathering information from the visitor.

Indexing The process of extracting data from website into the indexing table or tables.

Indexing Table A special table used for storing indexed content.

Search Engine A software used for indexing data from the world wide web.

Validator (forms) An object used for validating user input inside the control.

B.4 User Interface and Testing

Interview A part of a user testing used to retrieve basic information about participants to
analyse and prepare testing scenarios.

High Fidelity Testing A type of testing with users that utilizes an advanced electronic
prototype or uses a real application.

Low Fidelity Testing A type of testing with users that utilizes a paper or similar simple
prototype of a developed application.

Screener A test used to determine if the participant is suitable for a particular testing.

User Interface A visual part of the application that is used for interaction between the
user and a software system.

94 APPENDIX B. LIST OF TERMS

Appendix C

List of Content Modules

C.1 Basic Modules

The first list displays default content modules available in the Urchin application.

Article basic articles

Content text content with HTML formatting

Enquiry enquiries with questions and answers

Event events with calendar, categories and venues

Form a dynamic form builder with various fields and validation

Gallery** simple photo galleries

LastArticles a list of last articles

LastEvents a list of last events

LastNews a list of last news

News basic news

QuickContact a contact form with subject, e-mail and message

RSS RSS feeds, use other components as a data source

Search full-text search in the actual presentation

SendLink* form that sends link to the actual page

Sitemap a tree view of pages in the current presentation

95

96 APPENDIX C. LIST OF CONTENT MODULES

C.2 New Modules

The second list shows ideas and proposals for new modules. Not all ideas will be realized.

Banner banner and advertisement management, statistics for banners

Client user settings and preferences in the client zone

Comment* form for posting user comments

Forum discussion forum with topics, threads and posts

GoogleMap* a simple map attached to the element

Login login form to the client zone

Newsletter e-mailing to the registered users

Product product management with properties and price management

Registration registration form to the client zone

Top<Element> a list of most visited elements, e.g. articles, news, products

Vote* voting for an element

* Denotes a linkable (only) module.
** Gallery module is available both as standard and linkable module.

Appendix D

Electronic Disc

This thesis also includes a disc with electronic version of this work as required by the
conditions for submitting theses. The following list presents directory structure of the disc
with short description of its contents.

• /diagrams/ - project for Enterprise Architect with all diagrams

• /figures/ - all images and diagrams used in this text

• /thesis/ - electronic version of the thesis

• /final/ - final version in PDF
• /source/ - source code for LaTeX

97

98 APPENDIX D. ELECTRONIC DISC

Appendix E

Database Model

This appendix contains conceptual database models of the Urchin application. Both images
are stored on the electronic disc attached to this work.

E.1 Core Application

The first diagram displays database tables of the core application and their relations. All core
tables are prefixed a_* after the first letter of the alphabet. The picture shows three main
areas already described in the text, the page axis, the component axis, and the permission
system together with several interjecting tables. For the reasons of clarity and simplicity,
tables with translated terms are not included. These tables contain translations of static
terms, such as module name or page states. The path to this diagram is:

• /figures/urchin-db-cms.png

E.2 Content Modules

The second diagram shows database structure of all basic content modules. This set of
content modules is always available in the Urchin installation. On the database level, each
module consists of one main table that inherits a_element table, one view, and zero or more
additional tables. Module table are prefixed m_*, views are prefixed v_*. Relations to the
system modules are also shown if present. Basic modules Search and Sitemap do not require
any database tables and are not shown in the schema. The path to this file is:

• /figures/urchin-db-modules.png

99

100 APPENDIX E. DATABASE MODEL

Appendix F

Sample Application

This appendix presents a sample web application that is designed using Urchin content
management system. The sample application serves as a presentation of a fictional internet
agency called "Some Company" that offers services in multiple European countries. The
following text describes front-end structure and content of the website.

F.1 Description

F.2 Website and Presentations

Website consists of three different presentations that serve as language versions. Every
presentation therefore uses a different language. The list of presentation follows.

• English presentation

• Swedish presentation

• German presentation

F.3 Templates and Positions

The website utilizes three different types of pages. The type of a concrete page is determined
by template it has assigned. Available templates are home page, common page, and wide
page. Each template is connected to a different graphical layout and contains a different
fixed number of positions. The following list shortly describes all templates while figure F.1
depicts layout of these templates including header, menus, and positions.

1. home page template

• specific graphical layout, different to other templates
• three positions: left, middle, right

101

102 APPENDIX F. SAMPLE APPLICATION

Figure F.1: Templates available in the sample application.

2. common page template

• standard graphical layout with the left menu
• two positions: left, note

3. wide page template

• standard graphical layout without the left menu
• one position: main

F.4 Hierarchy of Pages

Each presentation in the website consists of multiple pages with website content. Page
hierarchy is independent for each presentation. Table F.1 describes details of each page, such
as assigned template and basic settings. Figure F.2 under this list explains logical structure
of the website with details for the English presentation. Basically, only the welcome page
employs the home page template. Pages for services and contacts use the common page
template and pages without sub-pages or parent pages has assigned the wide template.
System pages are not displayed in the picture except for search results and sitemap.

F.5 Modules and Components

All presentations contain multiple types of content, such as simple text, news, forms, or
references. Components are used to display content on the front-end. Table F.2 shows com-
ponents assigned in the same English presentation as described before. The table includes
a short description of each component and module that identifies the component. Empty
positions are not shown in the table.

F.5. MODULES AND COMPONENTS 103

Figure F.2: Logical hierarchy of the sample website.

page template settings and parameters
Welcome home page is_homepage = 1
News wide page n/a
Services common page no content, redirected to the first sub-page
Webdesign common page n/a
Programming common page n/a
Marketing common page n/a
References wide page n/a
Contact common page n/a
Order form common page n/a
Contact form common page n/a
Search results wide page system page, not in menu, is_fulltext = 1
Sitemap wide page system page, not in menu, is_sitemap = 1

Table F.1: Templates and settings of pages in the English presentation.

104 APPENDIX F. SAMPLE APPLICATION

page position module component

Welcome
left Content introduction and basic information
middle Content teaser for all services
right LatestNews the last two news

News left News news about the company and its projects
Services n/a n/a n/a

Webdesign main Content web design offer and description
note Content note ’prices including tax’

Programming main Content programming offer and description
note Content note ’prices including tax’

Marketing main Content marketing offer and description
note Content note ’prices including tax’

References main Articles information about completed projects
n/a Gallery photo gallery for each reference

Contact main Content address, contacts to salesmen
Order form main Form dynamic form with individual fields
Contact form main QuickContact pre-defined contact form
Search results main Search full-text search in current presentation
Sitemap main Sitemap tree of pages with links

Table F.2: Components assigned to pages of the English presentation.

	Introduction
	State of the Art
	Goals of the Study
	Project Name
	Urchin Overview
	Urchin Use
	Technology Used
	Thesis Outline
	Introduction
	Main Content
	Conclusion

	Architecture
	Chapter Overview
	Requirements
	Functional Requirements
	Non-functional Requirements
	Software Requirements

	Architecture Design
	Model-View-Controller Architectural Pattern
	Hierarchical Model-View-Controller Architectural Pattern
	Front Controller Design Pattern
	Use of Hierarchical Model-View-Controller in Urchin CMS

	Packages
	Context and Core Objects
	Context
	Session
	Request and Response
	Pool
	Cache
	Link

	Database Design
	Database Layer
	Database Structure
	Alternative Approaches

	Crud Library
	Common and Element Crud
	Entries
	Components
	Decorators
	Validators
	Converters
	Filters

	Cross and Matrix Crud
	Flexibility and Extensibility

	Core Features and Modules
	Chapter Overview
	The Page Axis
	Website
	Presentations
	Pages
	Templates and Positions
	Page Parameters and System Pages

	Internationalization and Localization
	File-Based Translations
	Database-Based Translations

	The Component Axis
	Modules
	System Modules
	Content Modules
	Application Modules
	Element Modules

	Components
	Elements
	Module Templates and Parameters
	Linkable Modules

	Security of a Web Application
	SQL Injection
	Cross-Site Scripting
	Authentication and Session Management
	Cross-Site Request Forgery

	The Permission System
	Authentication and Authorization
	General Access Control
	Action and Data Permission
	User and Groups
	Permission for Modules and Actions
	Permission for Presentations
	Permission for Page Groups
	Additional Features
	Front-End Permission

	Additional Features
	Content Work-Flow
	Content Preview
	Personal Settings

	Extending Modules
	Chapter Overview
	Content Modules
	Articles
	Content
	Enquiries
	Events
	Forms
	Galleries
	News
	QuickContact
	RSS
	Search
	Sitemap

	Dynamic Forms
	Form Implementation
	The Form Library
	Controls
	Validators
	Form Processing
	Form Security
	QuickContact Revisited
	Forms Revisited

	Content Search
	Entity-Based Search
	Content Indexing
	Combined Search
	Search Engine Service
	External Search Engine
	Index Module
	Search Module
	Indexing Table

	User Interface Design
	Administration
	Login Screen
	Administration Layout
	Page View
	File View

	Crud Layout
	Front-end Layout

	Testing of User Interface Design
	Objective
	Target Group
	Test Participants
	User A
	User B

	Screener
	Questions
	Selection of Participants
	Screener with User A
	Screener with User B

	Interview
	Topics and Questions
	Interview with User A
	Interview with User B
	Summary of Information

	User Scenarios
	Low Fidelity Testing
	Testing Overview
	Paper Prototype
	Goals and Scenarios
	Testing Plan
	Testing with User B

	Testing with User A
	Testing Summary

	High Fidelity Testing
	Testing overview
	Goals and Scenarios
	Preparations
	Testing Plan
	Testing with User B
	Testing with User A
	Evaluation of Testing

	Conclusion
	Achieved Objectives
	Future Plans
	Content Versions
	File Management
	Client Zone
	Technical Improvements

	New Modules
	Licensing

	List of Abbreviations
	List of Terms
	Architecture
	Core Features and Modules
	Extending Modules
	User Interface and Testing

	List of Content Modules
	Basic Modules
	New Modules

	Electronic Disc
	Database Model
	Core Application
	Content Modules

	Sample Application
	Description
	Website and Presentations
	Templates and Positions
	Hierarchy of Pages
	Modules and Components

